Log in

Upper and lower convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under large initial perturbation

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We show the upper and lower bounds of convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under a large initial perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. G. Astarita, G. Marrucci: Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, London, 1974.

    MATH  Google Scholar 

  2. H.-O. Bae, B. J. **: Upper and lower bounds of temporal and spatial decays for the Navier-Stokes equations. J. Differ. Equations 209 (2005), 365–391.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. J. Benvenutti, L. C. F. Ferreira: Existence and stability of global large strong solutions for the Hall-MHD system. Differ. Integral Equ. 29 (2016), 977–1000.

    MathSciNet  MATH  Google Scholar 

  4. M. D. Gunzburger, O. A. Ladyzhenskaya, J. S. Peterson: On the global unique solvability of initial-boundary value problems for the coupled modified Navier-Stokes and Maxwell equations. J. Math. Fluid Mech. 6 (2004), 462–482.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Guo, P. Zhu: Algebraic L2 decay for the solution to a class system of non-Newtonian fluid in ℝn. J. Math. Phys. 41 (2000), 349–356.

    Article  MathSciNet  Google Scholar 

  6. K. Kang, J.-M. Kim: Existence of solutions for the magnetohydrodynamics with power-law type nonlinear viscous fluid. NoDEA, Nonlinear Differ. Equ. Appl. 26 (2019), Article ID 11, 24 pages.

  7. G. Karch, D. Pilarczyk: Asymptotic stability of Landau solutions to Navier-Stokes system. Arch. Ration. Mech. Anal. 202 (2011), 115–131.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Karch, D. Pilarczyk, M. E. Schonbek: L2-asymptotic stability of singular solutions to the Navier-Stokes system of equations in ℝ3. J. Math. Pures Appl. (9) 108 (2017), 14–40.

    Article  MathSciNet  MATH  Google Scholar 

  9. J.-M. Kim: Temporal decay of strong solutions to the magnetohydrodynamics with power-law type nonlinear viscous fluid. J. Math. Phys. 61 (2020), Article ID 011504, 6 pages.

  10. J.-M. Kim: Time decay rates for the coupled modified Navier-Stokes and Maxwell equations on a half space. AIMS Math. 6 (2021), 13423–13431.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Kozono: Asymptotic stability of large solutions with large perturbation to the Navier-Stokes equations. J. Funct. Anal. 176 (2000), 153–197.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Miyakawa: On upper and lower bounds of rates of decay for nonstationary Navier-Stokes flows in the whole space. Hiroshima Math. J. 32 (2002), 431–462.

    Article  MathSciNet  MATH  Google Scholar 

  13. Š. Nečasová, P. Penel: L2 decay for weak solution to equations of non-Newtonian incompressible fluids in the whole space. Nonlinear Anal., Theory Methods Appl., Ser. A 47 (2001), 4181–4191.

    Article  MATH  Google Scholar 

  14. M. Oliver, E. S. Titi: Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in ℝn. J. Funct. Anal. 172 (2000), 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  15. V. N. Samokhin: A magnetohydrodynamic-equation system for a nonlinearly viscous liquid. Differ. Equations 27 (1991), 628–636; translation from Differ. Uravn. 27 (1991), 886–896.

    MATH  Google Scholar 

  16. M. E. Schonbek: Large time behaviour of solutions to the Navier-Stokes equations. Commun. Partial Differ. Equations 11 (1986), 733–763.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Secchi: L2 stability for weak solutions of the Navier-Stokes equations in ℝ3. Indiana Univ. Math. J. 36 (1987), 685–691.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Wiegner: Decay results for weak solutions of the Navier-Stokes equations on ℝn. J. Lond. Math. Soc., II. Ser. 35 (1987), 303–313.

    Article  MathSciNet  MATH  Google Scholar 

  19. W. L. Wilkinson: Non-Newtonian Fluids: Fluid Mechanics, Mixing and Heat Transfer. International Series of Monographs on Chemical Engineering 1. Pergamon Press, New York, 1960.

    MATH  Google Scholar 

  20. Q. **e, Y. Guo, B.-Q. Dong: Upper and lower convergence rates for weak solutions of the 3D non-Newtonian flows. J. Math. Anal. Appl. 494 (2021), Article ID 124641, 21 pages.

  21. Y. Zhou: Asymptotic stability for the 3D Navier-Stokes equations. Commun. Partial Differ. Equations 30 (2005), 323–333.

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. Zhou: Asymptotic stability for the Navier-Stokes equations in Ln. Z. Angew. Math. Phys. 60 (2009), 191–204.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to appreciate the anonymous referee for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Myoung Kim.

Additional information

This work was supported by a Research Grant of Andong National University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JM. Upper and lower convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under large initial perturbation. Czech Math J 73, 395–413 (2023). https://doi.org/10.21136/CMJ.2023.0230-21

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/CMJ.2023.0230-21

Keywords

MSC 2020

Navigation