Log in

IGF-1R/β-catenin signaling axis is involved in type 2 diabetic osteoporosis

IGF-1R/β-catenin 信号通路在 2 型糖尿病性骨质疏松中的作用

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Insulin-like growth factor-1 receptor (IGF-1R) is involved in both glucose and bone metabolism. IGF-1R signaling regulates the canonical Wnt/β-catenin signaling pathway. In this study, we investigated whether the IGF-1R/ β-catenin signaling axis plays a role in the pathogenesis of diabetic osteoporosis (DOP). Serum from patients with or without DOP was collected to measure the IGF-1R level using enzyme-linked immunosorbent assay (ELISA). Rats were given streptozotocin following a four-week high-fat diet induction (DOP group), or received vehicle after the same period of a normal diet (control group). Dual energy X-ray absorption, a biomechanics test, and hematoxylin-eosin (HE) staining were performed to evaluate bone mass, bone strength, and histomorphology, respectively, in vertebrae. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were performed to measure the total and phosphorylation levels of IGF-1R, glycogen synthase kinase-3β (GSK-3β), and β-catenin. The serum IGF-1R level was much higher in patients with DOP than in controls. DOP rats exhibited strikingly reduced bone mass and attenuated compression strength of the vertebrae compared with the control group. HE staining showed that the histo-morphology of DOP vertebrae was seriously impaired, which manifested as decreased and thinned trabeculae and increased lipid droplets within trabeculae. PCR analysis demonstrated that IGF-1R mRNA expression was significantly up-regulated, and western blotting detection showed that phosphorylation levels of IGF-1R, GSK-3β, and β-catenin were enhanced in DOP rat vertebrae. Our results suggest that the IGF-1R/β-catenin signaling axis plays a role in the pathogenesis of DOP. This may contribute to development of the underlying therapeutic target for DOP.

概要

目 的

探讨胰岛素样生长因子-1 受体 (IGF-1R)/β-联蛋白 (β-catenin) 信号通路是否在糖尿病性骨质疏松 (DOP) 病理机制中起作用。

创新点

发现 IGF-1R/β-catenin 信号通路在 DOP 病理机制中起作用, 可能是 DOP 潜在的治疗靶点。

方 法

收集 DOP 患者血清, 使用酶联免疫吸附测定 (ELISA) 法检测 IGF-1R 水**。 DOP 大鼠在 4 周高脂饲料喂养后给予链脲佐菌素建模, 对照组大鼠在普通饲料喂养 4 周后再给予链脲佐菌素溶媒 (柠檬酸钠缓冲液)。 应用双能 X 线吸收法、 生物力学测试和苏木精-伊红 (HE) 染色法分别评估椎体骨量、 骨**度和骨组织形态。 使用实时定量聚合酶链反应 (qRT-PCR) 和蛋白印迹法 (western blotting) 测定 IGF-1R、 糖原合成酶激酶-3β (GSK-3β)和 β-catenin 表达及其蛋白磷酸化水**。

结 论

DOP 患者血清 IGF-1R 较对照组高。 DOP 大鼠骨量、 压缩**度明显减小, HE 染色显示 DOP 椎体骨组织形态明显受损, IGF-1R 信使 RNA (mRNA) 表达上调, IGF-1R、 GSK-3β 和 β-catenin 蛋白磷酸化增加。 由此可见, IGF-1R/β-catenin 信号通路在 DOP 的病理机制中起作用, 该发现将有利于后期 DOP 治疗靶点的开发。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agholme F, Aspenberg P, 2011. Wnt signaling and orthopedics, an overview. Acta Orthop, 82(2):125–130. https://doi.org/10.3109/17453674.2011.572252

    Article  PubMed  PubMed Central  Google Scholar 

  • American Diabetes Association, 2016. Standards of medical care in diabetes—2016 abridged for primary care providers. Clin Diabetes, 34(1):3–21. https://doi.org/10.2337/diaclin.34.1.3

    Article  PubMed Central  Google Scholar 

  • Boucher J, Kleinridders A, Kahn CR, 2014. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol, 6(1):a009191. https://doi.org/10.1101/cshperspect.a009191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boura-Halfon S, Shuster-Meiseles T, Beck A, et al., 2010. A novel domain mediates insulin-induced proteasomal degradation of insulin receptor substrate 1 (IRS-1). Mol Endocrinol, 24(11):2179–2192. https://doi.org/10.1210/me.2010-0072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozic J, Markotic A, Cikes-Culic V, et al., 2018. Ganglioside GM3 content in skeletal muscles is increased in type 2 but decreased in type 1 diabetes rat models: implications of glycosphingolipid metabolism in pathophysiology of diabetes. J Diabetes, 10(2):130–139. https://doi.org/10.1111/1753-0407.12569

    Article  CAS  PubMed  Google Scholar 

  • Cheng PW, Chen YY, Cheng WH, et al., 2015. Wnt signaling regulates blood pressure by downregulating a GSK-3β-mediated pathway to enhance insulin signaling in the central nervous system. Diabetes, 64(10):3413–3424. https://doi.org/10.2337/db14-1439

    Article  CAS  PubMed  Google Scholar 

  • Cheng YY, Liu SC, Zhang X, et al., 2016. Expression profiles of IGF-1R gene and polymorphisms of its regulatory regions in different pig breeds. Protein J, 35(3):231–236. https://doi.org/10.1007/s10930-016-9666-x

    Article  CAS  PubMed  Google Scholar 

  • Cosman F, de Beur SJ, LeBoff MS, et al., 2014. Clinician’s guide to prevention and treatment of osteoporosis. Oste-oporos Int, 25(10):2359–2381. https://doi.org/10.1007/s00198-014-2794-2

    Article  CAS  Google Scholar 

  • Daniele G, Winnier D, Mari A, et al., 2015. Sclerostin and insulin resistance in prediabetes: evidence of a cross talk between bone and glucose metabolism. Diabetes Care, 38(8):1509–1517. https://doi.org/10.2337/dc14-2989

    Article  CAS  PubMed  Google Scholar 

  • de Meyts P, Whittaker J, 2002. Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov, 1(10):769–783. https://doi.org/10.1038/nrd917

    Article  CAS  Google Scholar 

  • Desbois-Mouthon C, Cadoret A, Blivetvan Eggelpoël MJ, et al., 2001. Insulin and IGF-1 stimulate the β-catenin pathway through two signalling cascades involving GSK-3β inhibition and Ras activation. Oncogene, 20(2):252–259. https://doi.org/10.1038/sj.onc.1204064

    Article  CAS  PubMed  Google Scholar 

  • Engberding N, San Martin A, Martin-Garrido A, et al., 2009. Insulin-like growth factor-1 receptor expression masks the antiinflammatory and glucose uptake capacity of insulin in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 29(3):408–415. https://doi.org/10.1161/ATVBAHA.108.181727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flanagan AM, Brown JL, Santiago CA, et al., 2008. High-fat diets promote insulin resistance through cytokine gene expression in growing female rats. J Nutr Biochem, 19(8): 505–513. https://doi.org/10.1016/j.jnutbio.2007.06.005

    Article  CAS  PubMed  Google Scholar 

  • Fowlkes JL, Nyman JS, Bunn RC, et al., 2013. Osteo-promoting effects of insulin-like growth factor I (IGF-I) in a mouse model of type 1 diabetes. Bone, 57(1):36–40. https://doi.org/10.1016/j.bone.2013.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulzele K, DiGirolamo DJ, Liu ZY, et al., 2007. Disruption of the insulin-like growth factor type 1 receptor in osteo-blasts enhances insulin signaling and action. J Biol Chem, 282(35):25649–25658. https://doi.org/10.1074/jbc.M700651200

    Article  CAS  PubMed  Google Scholar 

  • Geng YT, Ju YF, Ren FL, et al., 2014. Insulin receptor substrate 1/2 (IRS1/2) regulates Wnt/β-catenin signaling through blocking autophagic degradation of Dishevelled2. J Biol Chem, 289(16):11230–11241. https://doi.org/10.1074/jbc.M113.544999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gheibi S, Kashfi K, Ghasemi A, 2017. A practical guide for induction of type-2 diabetes in rat: incorporating a high-fat diet and streptozotocin. Biomed Pharmacother, 95:605–613. https://doi.org/10.1016/j.biopha.2017.08.098

    Article  CAS  PubMed  Google Scholar 

  • Hough FS, Pierroz DD, Cooper C, et al., 2016. MECHANISMS IN ENDOCRINOLOGY: mechanisms and evaluation of bone fragility in type 1 diabetes mellitus. Eur J Endocrinol, 174(4):R127–R138. https://doi.org/10.1530/EJE-15-0820

    Article  CAS  PubMed  Google Scholar 

  • Ikeda S, Kishida S, Yamamoto H, et al., 1998. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J, 17(5):1371–1384. https://doi.org/10.1093/emboj/17.5.1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer S, Ambrogini E, Bartell SM, et al., 2013. FOXOs attenuate bone formation by suppressing Wnt signaling. J Clin Invest, 123(8):3409–3419. https://doi.org/10.1172/JCI68049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janghorbani M, Feskanich D, Willett WC, et al., 2006. Prospective study of diabetes and risk of hip fracture: the nurses’ health study. Diabetes Care, 29(7):1573–1578. https://doi.org/10.2337/dc06-0440

    Article  PubMed  Google Scholar 

  • Jiao YK, Wang XQ, Jiang X, et al., 2017. Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet- and streptozotocin-induced type 2 diabetes in rats. J Eth-nopharmacol, 199:119–127. https://doi.org/10.1016/j.jep.2017.02.003

    Article  CAS  Google Scholar 

  • Kavran JM, McCabe JM, Byrne PO, et al., 2014. How IGF-1 activates its receptor. eLife, 3:e03772. https://doi.org/10.7554/eLife.03772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim IG, Kim SY, Choi SI, et al., 2014. Fibulin-3-mediated inhibition of epithelial-to-mesenchymal transition and self-renewal of ALDH+ lung cancer stem cells through IGF1R signaling. Oncogene, 33(30):3908–3917. https://doi.org/10.1038/onc.2013.373

    Article  CAS  PubMed  Google Scholar 

  • Krishnan V, Bryant HU, MacDougald OA, 2006. Regulation of bone mass by Wnt signaling. J Clin Invest, 116(5): 1202–1209. https://doi.org/10.1172/JCI28551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leng SH, Zhang WS, Zheng YB, et al., 2010. Glycogen syn-thase kinase 3β mediates high glucose-induced ubiquiti-nation and proteasome degradation of insulin receptor substrate 1. J Endocrinol, 206(2):171–181. https://doi.org/10.1677/JOE-09-0456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li BX, Wang Y, Liu Y, et al., 2013. Altered gene expression involved in insulin signaling pathway in type II diabetic osteoporosis rats model. Endocrine, 43(1):136–146. https://doi.org/10.1007/s12020-012-9757-1

    Article  CAS  PubMed  Google Scholar 

  • Liu XJ, Xu Q, Wang XM, et al., 2015. Irbesartan ameliorates diabetic cardiomyopathy by regulating protein kinase D and ER stress activation in a type 2 diabetes rat model. Pharmacol Res, 93:43–51. https://doi.org/10.1016/j.phrs.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  • Looker AC, Eberhardt MS, Saydah SH, 2016. Diabetes and fracture risk in older U.S. adults. Bone, 82:9–15. https://doi.org/10.1016/j.bone.2014.12.008

    Article  PubMed  Google Scholar 

  • Lu JM, Wang YF, Yan HL, et al., 2016. Antidiabetic effect of total saponins from Polygonatum kingianum in streptozotocin-induced daibetic rats. J Ethnopharmacol, 179:291–300. https://doi.org/10.1016/j.jep.2015.12.057

    Article  CAS  PubMed  Google Scholar 

  • Ma R, Wang L, Zhao B, et al., 2017. Diabetes perturbs bone microarchitecture and bone strength through regulation of Sema3A/IGF-1/β-catenin in rats. Cell Physiol Biochem, 41(1):55–66. https://doi.org/10.1159/000455936

    Article  CAS  PubMed  Google Scholar 

  • Napoli N, Chandran M, Pierroz DD, et al., 2017. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev En-docrinol, 13(4):208–219. https://doi.org/10.1038/nrendo.2016.153

    Article  CAS  Google Scholar 

  • NCD Risk Factor Collaboration, 2016. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet, 387(10027):1513–1530. https://doi.org/10.1016/S0140-6736(16)00618-8

    Article  Google Scholar 

  • Palsgaard J, Emanuelli B, Winnay JN, et al., 2012. Cross-talk between insulin and Wnt signaling in preadipocytes: role of Wnt co-receptor low density lipoprotein receptor-related protein-5 (LRP5). J Biol Chem, 287(15):12016–12026. https://doi.org/10.1074/jbc.M111.337048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelosi P, Lapi E, Cavalli L, et al., 2017. Bone status in a patient with insulin-like growth factor-1 receptor deletion syndrome: bone quality and structure evaluation using dual-energy X-ray absorptiometry, peripheral quantitative computed tomography, and quantitative ultrasonography. Front Endocrinol (Lausanne), 8:227. https://doi.org/10.3389/fendo.2017.00227

    Article  Google Scholar 

  • Reed MJ, Meszaros K, Entes LJ, et al., 2000. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism, 49(11):1390–1394. https://doi.org/10.1053/meta.2000.17721

    Article  CAS  PubMed  Google Scholar 

  • Rota LM, Wood TL, 2015. Crosstalk of the insulin-like growth factor receptor with the Wnt signaling pathway in breast cancer. Front Endocrinol (Lausanne), 6:92. https://doi.org/10.3389/fendo.2015.00092

    Article  Google Scholar 

  • Rota LM, Albanito L, Shin ME, et al., 2014. IGF1R inhibition in mammary epithelia promotes canonical Wnt signaling and Wnt1-driven tumors. Cancer Res, 74(19):5668–5679. https://doi.org/10.1158/0008-5472.CAN-14-0970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlupf J, Steinbeisser H, 2014. IGF antagonizes the Wnt/ β-catenin pathway and promotes differentiation of extra-embryonic endoderm. Differentiation, 87(5):209–219. https://doi.org/10.1016/j.diff.2014.07.003

    Article  CAS  PubMed  Google Scholar 

  • Schwartz AV, Hillier TA, Sellmeyer DE, et al., 2002. Older women with diabetes have a higher risk of falls: a prospective study. Diabetes Care, 25(10):1749–1754. https://doi.org/10.2337/diacare.25.10.1749

    Article  PubMed  Google Scholar 

  • Siddle K, 2012. Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front Endocrinol (Lausanne), 3:34. https://doi.org/10.3389/fendo.2012.00034

    Article  Google Scholar 

  • Slaaby R, Schäffer L, Lautrup-Larsen I, et al., 2006. Hybrid receptors formed by insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) have low insulin and high IGF-1 affinity irrespective of the IR splice variant. J Biol Chem, 281(36):25869–25874. https://doi.org/10.1074/jbc.M605189200

    Article  CAS  Google Scholar 

  • Solomon-Zemler R, Basel-Vanagaite L, Steier D, et al., 2017. A novel heterozygous IGF-1 receptor mutation associated with hypoglycemia. Endocr Connect, 6(6):395–403. https://doi.org/10.1530/EC-17-0038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan K, Viswanad B, Asrat L, et al., 2005. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res, 52(4):313–320. https://doi.org/10.1016/j.phrs.2005.05.004

    Article  CAS  PubMed  Google Scholar 

  • Sroga GE, Wu PC, Vashishth D, 2015. Insulin-like growth factor 1, glycation and bone fragility: implications for fracture resistance of bone. PLoS ONE, 10(1):e0117046. https://doi.org/10.1371/journal.pone.0117046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szkudelski T, 2012. Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med (Maywood), 237(5):481–490. https://doi.org/10.1258/ebm.2012.011372

    Article  CAS  Google Scholar 

  • Thrailkill KM, Lumpkin CK Jr, Bunn RC, et al., 2005. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab, 289(5): E735–E745. https://doi.org/10.1152/ajpendo.00159.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Du CH, Li ZY, et al., 2018. Comparing the antidiabetic effects and chemical profiles of raw and fermented Chinese Ge-Gen-Qin-Lian decoction by integrating untargeted metabolomics and targeted analysis. Chin Med, 13(1):54. https://doi.org/10.1186/s13020-018-0208-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZD, Ren H, Shen GY, et al., 2016. Animal models for glucocorticoid-induced postmenopausal osteoporosis: an updated review. Biomed Pharmacother, 84:438–446. https://doi.org/10.1016/j.biopha.2016.09.045

    Article  CAS  PubMed  Google Scholar 

  • Zhao HH, Li ZG, Tian GH, et al., 2013. Effects of traditional Chinese medicine on rats with Type II diabetes induced by high-fat diet and streptozotocin: a urine metabonomic study. Afr Health Sci, 13(3):673–681. https://doi.org/10.4314/ahs.v13i3.22

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the specific pathogen free (SPF) animal laboratory of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China, for providing the experimental platform.

Author information

Authors and Affiliations

Authors

Contributions

Zhi-da ZHANG, Hui REN, and **ao-bing JIANG designed this study. Wei-xi WANG, Geng-yang SHEN, **-**g HUANG, Mei-qi ZHAN, and Yu-zhuo ZHANG performed these experiments. **g-**g TANG and **ang YU searched the relative literature and reviewed the methods for model establishment, Zhi-da ZHANG and Hui REN conducted statistical analysis. Zhi-da ZHANG prepared this manuscript. De LIANG and Zhi-dong YANG reviewed and edited manuscript. All authors have read and approved this manuscript. Therefore, all authors have full access to all the data in the study and take responsibility for the integrity and security of the data.

Corresponding author

Correspondence to **ao-bing Jiang.

Ethics declarations

Zhi-da ZHANG, Hui REN, Wei-xi WANG, Geng-yang SHEN, **-**g HUANG, Mei-qi ZHAN, **g-**g TANG, **ang YU, Yu-zhuo ZHANG, De LIANG, Zhi-dong YANG, and **ao-bing JIANG declare that they have no conflict of interest.

All institutional and national guidelines for the care and use of laboratory animals were followed. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5). Informed consent was obtained from all patients for being included in the study.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 81774338 and 81674000), the Natural Science Foundation of Guangdong Province (No. 2016A030313645), the Science and Technology Projects of Guangdong Province (No. 2016A020226006), and the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2018), China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Zd., Ren, H., Wang, Wx. et al. IGF-1R/β-catenin signaling axis is involved in type 2 diabetic osteoporosis. J. Zhejiang Univ. Sci. B 20, 838–848 (2019). https://doi.org/10.1631/jzus.B1800648

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1800648

Key words

关键词

CLC number

Navigation