Log in

Liquid film dryout model for predicting critical heat flux in annular two-phase flow

  • Review
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Gas-liquid two-phase flow and heat transfer can be encountered in numerous fields, such as chemical engineering, refrigeration, nuclear power reactor, metallurgical industry, spaceflight. Its critical heat flux (CHF) is one of the most important factors for the system security of engineering applications. Since annular flow is the most common flow pattern in gas-liquid two-phase flow, predicting CHF of annular two-phase flow is more significant. Many studies have shown that the liquid film dryout model is successful for that prediction, and determining the following parameters will exert predominant effects on the accuracy of this model: onset of annular flow, inception criterion for droplets entrainment, entrainment fraction, droplets deposition and entrainment rates. The main theoretical results achieved on the above five parameters are reviewed; also, limitations in the existing studies and problems for further research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, L.G., Coldren, C.L., 1951. Droplet transfer from suspending air to duct walls. Industrial & Engineering Chemistry, 43:1325–1331.

    Article  Google Scholar 

  • Andreussi, P., 1983. Droplet transfer in two-phase annular flow. International Journal of Multiphase Flow, 9(6):697–713. [doi:10.1016/0301-9322(83)90117-9]

    Article  MATH  Google Scholar 

  • Andreussi, P., Azzopardi, B.J., 1983. Droplet deposition and interchange in annular two-phase flow. International Journal of Multiphase Flow, 9(6):681–695. [doi:10.1016/0301-9322(83)90116-7]

    Article  MATH  Google Scholar 

  • Armand, A.A., 1964. Resistance with motion of a two-phase system along horizontal tubes. Izv. Vses. Teplotekh. Inst., 1:16–23.

    Google Scholar 

  • Asali, J.C., 1984. Entrainment in Vertical Gas-liquid Annular Flow. PhD Thesis, University of Illinois.

  • Asali, J.C., Hanratty, T.J., Andreussi, P., 1985. Interfacial drag and film height for vertical annular flow. AIChE Journal, 31(6):895–902. [doi:10.1002/aic.690310604]

    Article  Google Scholar 

  • Azzopardi, B.J., 1997. Drops in annular two-phase flow. International Journal of Multiphase Flow, 23(7):1–53. [doi:10.1016/S0301-9322(97)90087-2]

    Article  MATH  Google Scholar 

  • Azzopardi, B.J., Whalley, P.B., 1980. Artificial Waves in Annular Two-phase Flow ASME Winter Annual Meeting. Published in Basic Mechanisms in Two-phase Flow and Heat Transfer, Chicago, p.1–8.

  • Azzopardi, B.J., Taylor, S., Gibbons, D.B., 1983. Annular Two Phase Flow in a Large Diameter Tube. International Conference on the Physical Modeling of Multi-phase Flow, Coventry, p.267–282.

  • Bai, B.F., Huang, R., Guo, L.J., **ao, Z.J., 2003. Physical model of critical heat flux with annular flow in annulus tubes. Journal of Engineering Thermophysics, 24(2):251–254 (in Chinese).

    Google Scholar 

  • Bennett, A.W., 1969. Measurement of Liquid Film Flow Rates at 1000 Pisa in Upward Steam Water Flow in a Vertical Heated Tube. AERE-R-5809, United Kingdom Atomic Energy Authority, Reactor Group, Atomic Energy Establishment, England.

    Google Scholar 

  • Bennett, A.W., Hewitt, G.F., Kearsey, H.A., Keeys, R.K.F., Pulling, D.J., 1966. Studies of Burnout in Boiling Heat Transfer to Water in Round Tubes with Non-uniform Heating. AERE-R-5076, United Kingdom Atomic Energy Authority, Reactor Group, Atomic Energy Establishment, England.

    Google Scholar 

  • Brown, D.J., 1978. Disequilibrium Annular Flow. PhD Thesis, University of Oxford.

  • Brown, D.J., Jensen, A., Whalley, P.B., 1975. Non-equilibrium Effects in Heated and Unheated Annular Two Phase Flow. ASME Paper No. 75-WA/HT-7.

  • Celata, G.P., Mishima, K., Zummo, G., 2001. Critical heat flux prediction for saturated flow boiling of water in vertical tubes. International Journal of Heat and Mass Transfer, 44(22):4323–4331. [doi:10.1016/S0017-9310(01)00072-2]

    Article  MATH  Google Scholar 

  • Collier, J.G., 1972. Convective Boiling and Condensation. McGraw-Hill, New York.

    Google Scholar 

  • Collier, J.G., Hewitt, G.F., 1961. Data on the vertical flow of air-water mixtures in the annular and dispersed flow regions, Part II: film thickness and entrainment data and analysis of pressure drop measurements. Transactions of the Institution of Chemical Engineers, 39:127–144.

    Google Scholar 

  • Cousins, L.B., Hewitt, G.F., 1968a. Liquid Phase Mass Transfer in Annular Two-phase Flow: Droplet Deposition and Liquid Entrainment. AERE-R-5657, United Kingdom Atomic Energy Authority, Reactor Group, Atomic Energy Establishment, England.

    Google Scholar 

  • Cousins, L.B., Hewitt, G.F., 1968b. Liquid Phase Mass Transfer in Annular Two-phase Flow: Radial Liquid Mixing. AERE-R-5693, United Kingdom Atomic Energy Authority. Reactor Group. Atomic Energy Establishment, England.

    Google Scholar 

  • Cousins, L.B., Denton, W.H., Hewitt, G.F., 1965. Liquid Mass Transfer in Annular Two-phase Flow. Proceedings of Symposium on Two-phase Flow, Exeter, UK, Paper C4.

  • Dallman, J.C., Jones, B.G., Hanratty, T.J., 1979. Interpretation of Entrainment Measurements in Annular Gas-liquid Flow, Two-phase Momentum Heat and Mass Transfer. Hemisphere, Washington DC, p.681–693.

    Google Scholar 

  • Dykhno, L.A., Hanratty, T.J., 1996. Use of the interchange model to predict entrainment in vertical annular flow. Chemical Engineering Communications, 141-142:207–235.

    Article  Google Scholar 

  • Fan, P., Qiu, S.Z., Jia, D.N., 2006. An investigation of flow characteristics and critical heat flux in vertical upward round tube. Nuclear Science and Techniques, 17(3):170–176. [doi:10.1016/S1001-8042(06)60033-X]

    Article  Google Scholar 

  • Gill, L.E., Hewitt, G.F., Hitchon, J.W., Lacey, P.M.C., 1962. Sampling Probe Studies of the Gas Core in Annular Two-phase Flow: Part 1: the Effect of Length on Phase and Velocity Distribution. AERE-R-3954, United Kingdom Atomic Energy Authority. Reactor Group. Atomic Energy Establishment, England.

    Google Scholar 

  • Gill, L.E., Hewitt, G.F., Lacey, P.M.C., 1964. Sampling probe studies of the gas core in annular two-phase flow: II, studies of the effect of phase flowrates on phase and velocity distributions. Chemical Engineering Science, 19(9):665–682.

    Article  Google Scholar 

  • Gill, L.E., Hewitt, G.F., Roberts, D.N., 1969. Studies of the Behaviour of Disturbance Waves in a Long Vertical Tube. AERE-R-6012, United Kingdom Atomic Energy Authority. Reactor Group. Atomic Energy Establishment, England.

    Google Scholar 

  • Govan, A.H., 1988. Phenomenological Prediction of Critical Heat Flux. Proceeding of the 2nd UK National Heat Transfer Conference, p.315–326.

  • Govan, A.H., Hewitt, G.F., Owen, D.G., Bott, T.R., 1988. An Improved CHF Modeling Code. Proceeding of the 2nd UK National Heat Transfer Conference, p.33–48.

  • Hanratty, T.J., Woods, B.D., Iliopoulos, I., Pan, L., 2000. The roles of interfacial stability and particle dynamics in multiphase flows: a personal viewpoint. International Journal of Multiphase Flow, 26(2):169–190. [doi:10.1016/S0301-9322(99)00004-X]

    Article  MATH  Google Scholar 

  • Hay, K.J., Liu, Z.C., Hanratty, T.J., 1996. Relation of deposition to drop size when the rate law is nonlinear. International Journal of Multiphase Flow, 22(5):829–848. [doi:10.1016/0301-9322(96)00029-8]

    Article  MATH  Google Scholar 

  • Hewitt, G.F., Pulling, D.J., 1969. Liquid Entrainment in Adiabatic Steam-water Flow. AERE-R-5374, United Kingdom Atomic Energy Authority, Reactor Group, Atomic Energy Establishment, England.

    Google Scholar 

  • Hewitt, G.F., Hall-Taylor, N.S., 1970. Annular Two-phase Flow. Pergamon Press, Oxford.

    Google Scholar 

  • Hewitt, G.F., Govan, A.H., 1990. Phenomenological modeling of non-equilibrium flows with phase change. International Journal of Heat and Mass Transfer, 33(2):229–242. [doi:10.1016/0017-9310(90)90094-B]

    Article  Google Scholar 

  • Hewitt, G.F., Kearsey, H.A., Keeys, R.K.F., 1969. Determination of Rate of Deposition of Droplets in a Heated Tube with Steam-water Flow at 1000 Psia. AERE-R-6118, United Kingdom Atomic Energy Authority, Reactor Group, Atomic Energy Establishment, England.

    Google Scholar 

  • Hujghe, J., Mondin, H., 1961. Transfert de chaleur par melange de liquide et de gas en convection force turbulente aves faible vaporisation de la phase liquide. C. R. Hebd. Seanc. Acad. Sci. Paris, 253:395–397.

    Google Scholar 

  • Hutchinson, P., Whalley, P.B., 1973. A possible characterisation of entrainment in annular flow. Chemical Engineering Science, 28(3):974–975. [doi:10.1016/0009-2509(77)80034-1]

    Article  Google Scholar 

  • Ishii, M., Grolmes, M.A., 1975. Inception criteria for droplet entrainment in two-phase concurrent film flow. AIChE Journal, 21(2):308–318. [doi:10.1002/aic.690210212]

    Article  Google Scholar 

  • Ishii, M., Mishima, K., 1981. Correlation for Liquid Entrainment in Annular Two-phase Flow of Low Viscous Fluid. ANL RAS LWR 81-2, Argonne National Laboratory.

  • Ishii, M., Mishima, K., 1989. Droplet entrainment correlation in annular two-phase flow. International Journal of Heat and Mass Transfer, 32(10):1835–1846. [doi:10.1016/0017-9310(89)90155-5]

    Article  Google Scholar 

  • Jepson, D.M., 1992. Vertical Annular Flow: the Effect of Physical Properties. PhD Thesis, University of Oxford.

  • Kataoka, I., Ishii, M., Nakayama, A., 2000. Entrainment and deposition rates of droplets in annular two-phase flow. International Journal of Heat and Mass Transfer, 43(9):1573–1589. [doi:10.1016/S0017-9310(99)00236-7]

    Article  MATH  Google Scholar 

  • Katto, Y., 1984. Prediction of critical heat flux for annular flow in tubes taking into account the critical liquid film thickness concept. International Journal of Heat and Mass Transfer, 27(6):883–891. [doi:10.1016/0017-9310(84)90009-7]

    Article  Google Scholar 

  • Keeys, R.F.K., 1970. The Effect of Heat Flux on Liquid Entrainment in Steam-water Flow in a Vertical Tube at 1000 Pisa. AERE-R-6294, United Kingdom Atomic Energy Authority, Reactor Group, Atomic Energy Establishment, England.

    Google Scholar 

  • Keeys, R.F.K., Ralph, J.C., Roberts, D.N., 1970. Liquid Entrainment in Adiabatic Steam-water Flow at 500 and 1000 Psia. AERE-R-6293, United Kingdom Atomic Energy Authority, Reactor Group, Atomic Energy Establishment, England.

    Google Scholar 

  • Lee, D.H., 1965. An Experimental Investigation of Forced Convection Burnout in High Pressure Water: Part 3 Long Tubes with Uniform and Non-uniform Axial Heating. AEEW-R355.

  • Lee, D.H., Obertelli, J.D., 1963. An Experimental Investigation of Forced Convection Burnout in High Pressure Water: Part 2 Preliminary Results for Round Tubes with Non-uniform Axial Heat Flux Distribution. AEEW-R309.

  • Lee, K.W., Baik, S.J., Ro, T.S., 2000. An utilization of liquid sublayer dryout mechanism in predicting critical heat flux under low pressure and low velocity conditions in round tubes. Nuclear Engineering and Design, 200(1–2):69–81. [doi:10.1016/S0029-5493(99)00335-0]

    Article  Google Scholar 

  • Leman, G.W., 1983. Effects of Liquid Viscosity in Two-Phase Annular Flow. PhD Thesis, University of Illinois.

  • Lopez de Bertodano, M.A., Jan, C.S., Beus, S.G., 1997. Annular flow entrainment rate experiment in a small vertical pipe. Nuclear Engineering and Design, 178(1–2):61–70. [doi:10.1016/S0029-5493(97)00175-1]

    Article  Google Scholar 

  • Magiros, P.G., Dukler, A.E., 1961. Entrainment and Pressure Drop in Concurrent Gas-liquid Flow. Proceedings of the 7th Midwestern Mechanics Conference, p.532–553.

  • Mingh, T.Q., 1965. Some Hydrodynamic Aspects of Annular Dispersed Flow, Entrainment and Film Thickness. Two-phase Flow Symposium, Exeter, UK, Paper C2.

  • Mishima, K., Ishii, M., 1984. Flow regime transition criteria for upward two-phase flow in vertical tubes. International Journal of Heat and Mass Transfer, 27(5):723–737. [doi:10.1016/0017-9310(84)90142-X]

    Article  Google Scholar 

  • Namie, S., Ueda, T., 1972. Droplet transfer in two-phase annular mist flow (PART 1 experiment of droplet transfer rate and distributions of droplet concentration and velocity). Bulletin JSME, 15:1568–1580.

    Article  Google Scholar 

  • Namie, S., Ueda, T., 1973. Droplet transfer in two-phase annular mist flow (PART 2 prediction of droplet transfer rate). Bulletin JSME, 16:752–764.

    Article  Google Scholar 

  • Nigmatulin, B.I., Malyshenko, V.I., Shugaev, Y.Z., 1976. Investigation of liquid distribution between the core and the film in annular dispersed flow of steam-water mixture. Teploenergetika, 23(5):66–68.

    Google Scholar 

  • Okawa, T., Kataoka, I., 2005. Correlations for the mass transfer rate of droplets in vertical upward annular flow. International Journal of Heat and Mass Transfer, 48(23–24):4766–4778. [doi:10.1016/j.ijheatmasstransfer.2005.06.014]

    Article  Google Scholar 

  • Okawa, T., Kitahara, T., Yoshida, K., Matsumoto, T., Kataoka, I., 2002. New entrainment rate correlation in annular two-phase flow applicable to wide range of flow condition. International Journal of Heat and Mass Transfer, 45(1):87–98. [doi:10.1016/S0017-9310(01)00111-9]

    Article  MATH  Google Scholar 

  • Okawa, T., Kotani, A., Kataoka, I., Naito, M., 2003. Prediction of critical heat flux in annular flow using a film flow model. Journal of Nuclear Science and Technology, 40(6):388–396. [doi:10.3327/jnst.40.388]

    Article  Google Scholar 

  • Okawa, T., Kotani, A., Kataoka, I., 2004a. Experiments for Equilibrium Entrainment Fraction in a Small Vertical Tube. Proceedings of the 5th International Conference Multiphase Flow, Yokohama, Paper 224.

  • Okawa, T., Kotani, A., Kataoka, I., Naitoh, M., 2004b. Prediction of the critical heat flux in annular regime in various vertical channels. Nuclear Engineering and Design, 229(2–3):223–236. [doi:10.1016/j.nucengdes.2004.01.005]

    Article  Google Scholar 

  • Okawa, T., Kotani, A., Kataoka, I., 2005. Experiments for liquid phase mass transfer rate in annular regime for a small vertical tube. International Journal of Heat and Mass Transfer, 48(3–4):585–598. [doi:10.1016/j.ijheamasstransfer.2004.08.030]

    Article  Google Scholar 

  • Olson, R.M., Eckert, E.R.G., 1966. Experimental studies of turbulent flow in a porous circular tube with uniform fluid injection through the tube wall. Transactions of the ASME Journal of Applied Mechanics, 33(4):7–17.

    Article  Google Scholar 

  • Owen, D.G., Hewitt, G.F., 1986. A Proposed Entrainment Correlation. AERE-R-12279, United Kingdom Atomic Energy Authority, Reactor Group, Atomic Energy Establishment, England.

    Google Scholar 

  • Owen, D.G., Hewitt, G.F., 1987. An Improved Annular Two-Phase Flow Model. Proceedings of the 3rd International Conference on Multiphase Flow, the Hague, the Netherlands.

  • Owen, D.G., Hewitt, G.F., Bott, T.R., 1985. Equilibrium annular flows at high mass fluxes data and interpretation. PCH Physicochemical Hydrodynamics, 6:115–131.

    Google Scholar 

  • Paleev, I.I., Agafonova, F.A., 1962. Heat Transfer between a Hot Surface and a Gas Flow Entraining Drops of Evaporating Liquid. Proceedings of the 1st All-Union Heat and Mass Transfer Conference, Minsk, p.260–268.

  • Paleev, I.I., Filippovich, B.S., 1966. Phenomena of liquid transfer in two-phase dispersed annular flow. International Journal of Heat and Mass Transfer, 9(10):1089–1093. [doi:10.1016/0017-9310(66)90031-7]

    Article  Google Scholar 

  • Pan, L., Hanratty, T.J., 2002. Correlation of entrainment for annular flow in vertical pipes. International Journal of Multiphase Flow, 28(3):363–384. [doi:10.1016/S0301-9322(01)00073-8]

    Article  MATH  Google Scholar 

  • Peng, S.W., 2008. Heat flux effect on the droplet entrainment and deposition in annular flow dryout. Communications in Nonlinear Science and Numerical Simulation, 13(10):2223–2235. [doi:10.1016/j.cnsns.2007.06.008]

    Article  Google Scholar 

  • Rossum, J.J.V., 1951. Experimental investigation of horizontal liquid films: wave formation, atomization, film thickness. Chemical Engineering Science, 11(2):35–52.

    Google Scholar 

  • Saito, T., Hughes, E.D., Carbon, M.W., 1978. Multi-fluid modeling of annular two-phase flow. Nuclear Engineering and Design, 50(2):225–271. [doi:10.1016/0029-5493(78)90041-9]

    Article  Google Scholar 

  • Schadel, S.A., Leman, G.W., Binder, J.L., Hanratty, T.J., 1990. Rates of atomization and deposition in vertical annular flow. International Journal of Multiphase Flow, 16(3):363–374. [doi:10.1016/0301-9322(90)90069-U]

    Article  MATH  Google Scholar 

  • Singh, K., Pierre, C.C.S., Crago, W.A., Moeck, E.O., 1969. Liquid film flowrates in two-phase flow of steam and water at 1000 psia. AIChE Journal, 15(1):51–56. [doi:10.1002/aic.690150115]

    Article  Google Scholar 

  • Steen, D.A., Wallis, G.B., 1964. The Transition from Annular to Annular Mist Concurrent Two Phase Down Flow. AEC Report NYO-3114-2.

  • Sugawara, S., 1990. Droplet deposition and entrainment modeling based on the three-fluid model. Nuclear Engineering and Design, 122(1–3):67–84. [doi:10.1016/0029-5493(90)90197-6]

    Article  Google Scholar 

  • Ueda, T., 1979a. Droplet entrainment rate and droplet diameter in annular two-phase flow. Bulletin JSME, 45:127–135.

    Article  Google Scholar 

  • Ueda, T., 1979b. Entrainment rate and size distribution of entrained droplets in annular two-phase flow. Bulletin JSME, 22:1258–1265.

    Article  Google Scholar 

  • Ueda, T., Inoue, M., Nagatome, S., 1981. Critical heat flux and droplet entrainment rate in boiling of falling liquid films. International Journal of Heat and Mass Transfer, 24(7):1257–1266. [doi:10.1016/0017-9310(81)90175-7]

    Article  Google Scholar 

  • Utsuno, H., Kaminaga, F., 1998. Prediction of liquid film dryout in two-phase annular-mist flow in a uniformly heated narrow tube development of analytical method under BWR conditions. Journal of Nuclear Science and Technology, 35(9):643–653. [doi:10.3327/jnst.35.643]

    Article  Google Scholar 

  • Wallis, G.B., 1961. Flooding Velocities for Air and Water Vertical Tubes. AEEW-R-123, United Kingdom Atomic Energy Authority, Reactor Group, Atomic Energy Establishment, England.

    Google Scholar 

  • Wallis, G.B., 1969. One-dimensional Two-phase Flow. McGraw-Hill, New York.

    Google Scholar 

  • Whalley, P.B., 1977. The calculation of dryout in a rod bundle. International Journal of Multiphase Flow, 3(6):501–515. [doi:10.1016/0301-9322(77)90026-X]

    Article  MATH  Google Scholar 

  • Whalley, P.B., Jepson, D.M., 1994. Entrainment and Deposi tion in Annular Gas-liquid Flow: the Effect of Fluid Physical Properties. Proceedings of the 10th International Heat Transfer Conference, Brighton, UK, p.289–294.

  • Whalley, P.B., Hewitt, G.F., Hutchinson, P., 1973. Experimental Wave and Entrainment Measurements in Vertical Annular Two-phase Flow. AERE-R-7521, United Kingdom Atomic Energy Authority, Reactor Group, Atomic Energy Establishment, England.

    Google Scholar 

  • Whalley, P.B., Hutchinson, P., Hewitt, G.F., 1974. Calculation of Critical Heat Flux in Forced Convection Boiling. Proceedings of the 5th International Heat Transfer Conference, Tokyo, Japan, p.290–294.

  • Wicks, M., Dukler, A.E., 1960. Entrainment and pressure drop in concurrent gas-liquid flow: air water in horizontal flow. AIChE Journal, 6(3):463–468. [doi:10.1002/aic.690060324]

    Article  Google Scholar 

  • Willetts, I.P., 1987. Non-aqueous Annular Two-phase Flow. PhD Thesis, University of Oxford.

  • Woodmansee, D.E., Hanratty, T.J., 1969. Mechanism for the removal of droplets from a liquid surface by a parallel air flow. Chemical Engineering Science, 24(2):299–307. [doi:10.1016/0009-2509(69)80038-2]

    Article  Google Scholar 

  • Wurtz, J., 1978a. Entrainment in Annular Steam-water Flow. European Two-phase Flow Group Meeting, Stockholm, Paper A4.

    Google Scholar 

  • Wurtz, J., 1978b. An experimental and Theoretical Investigation of Annular Steam-water Flow in Tubes and Annuli at 30 to 90 bar. Riso Report No. 372, Riso National Laboratory.

  • Yanai, M., 1971. Study on Boiling Heat Transfer in a Flow Channel. PhD Thesis, Kyoto University.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-hua Gan.

Additional information

Project (No. 2006C24G2010027) supported by the Science and Technology Department of Zhejiang Province, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, B., Qiu, Lm., Lu, Jl. et al. Liquid film dryout model for predicting critical heat flux in annular two-phase flow. J. Zhejiang Univ. Sci. A 10, 398–417 (2009). https://doi.org/10.1631/jzus.A0820322

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0820322

Key words

CLC number

Navigation