Log in

Study of porous limestone mechanical behavior with digital image correlation: calibration and validation

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This article deals with the monitoring of strain on tuffeau, a soft and porous building limestone used in stonework in historical masonry. Previous studies have shown the limitations of using strain gauges for mechanical monitoring, due to the size and local nature of the measurement. The digital image correlation (DIC) technique has proved to be a significant, non-contact and non-destructive method for full-field strain measurements of various materials, including rocks which are natural and therefore heterogeneous. In this work, we studied the DIC parameters and calibration process to identify the best configuration for working with a porous limestone material subjected to mechanical loading. Because of its potential impact on the quality of strain measurement, we also explored the effect of geometry and rectification. While the results provide a set of optimized parameters to get the best out of DIC analysis, they also highlight the importance of rectification on the mechanical behavior of such soft, porous stones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability

Data will be made available on request.

References

  1. Dessandier D (1995) Étude du milieu poreux et des propriétés de transfert des fluides du tuffeau blanc de Touraine : application à la durabilité des pierres en oeuvre. Université de Tours, Thèse de doctorat

    Google Scholar 

  2. Beck K, Al-Mukhtar M, Rozenbaum O, Rautureau M (2003) Characterization, water transfer properties and deterioration in tuffeau : building material in the Loire valley-France. Build Environ 38:1151–1162. https://doi.org/10.1016/S0360-1323(03)00074-X

    Article  Google Scholar 

  3. Balawi M, Beck K, Belayachi N, and Brunetaud X (2022) Elaboration et caractérisation d’un enduit à base de poudre de tuffeau et de chaux. In: Proceeding des 40èmes Rencontres Universitaires de Génie Civil (AUGC2022)

  4. Beck K, Al-Mukhtar M (2008) Formulation and characterization of an appropriate lime-based mortar for use with a porous limestone. Environ Geol 56(3–4):715–727. https://doi.org/10.1007/s00254-008-1299-8

    Article  Google Scholar 

  5. Beck K, Brunetaud X, Mertz J-D, Al-Mukhtar M (2010) On the use of eggshell lime and tuffeau powder to formulate an appropriate mortar for restoration purposes. Geol Soc Lond Special Publ 331(1):137–145. https://doi.org/10.1144/SP331.12

    Article  Google Scholar 

  6. Beck K, Rozenbaum O, Al-Mukhtar M, and Plançon A (2006) Multi-scale characterisation of monument limestones. In: 6th international symposium on the conservation of monuments in the mediterranean basin. https://doi.org/10.48550/ar**v.physics/0609111

  7. Beck K, Al-Mukhtar M (2005) Multi-scale characterisation of two French limestones used in historic constructions. Restor Build Monum 11(4):219–226. https://doi.org/10.1515/rbm-2005-5970

    Article  Google Scholar 

  8. Price DG (1995) Weathering and weathering processes. Q J Eng Geol 28:243–252

    Article  Google Scholar 

  9. Beck K, Al-Mukhtar M (2010) Weathering effects in an urban environment: a case study of tuffeau, a French porous limestone. Geol Soc Spec Publ 331:103–111. https://doi.org/10.1144/SP331.8

    Article  Google Scholar 

  10. Janvier-Badosa S, Beck K, Brunetaud X, Al-Mukhtar M (2014) The occurrence of gypsum in the scaling of stones at the Castle of Chambord (France). Environ Earth Sci 71(11):4751–4759. https://doi.org/10.1007/s12665-013-2865-2

    Article  Google Scholar 

  11. Berthonneau J, Bromblet P, Cherblanc F, Ferrage E, Vallet JM, Grauby O (2016) The spalling decay of building bioclastic limestones of Provence (South East of France): From clay minerals swelling to hydric dilation. J Cult Herit 17:53–60. https://doi.org/10.1016/j.culher.2015.05.004

    Article  Google Scholar 

  12. ICOMOS-ISCS (2008) Illustrated glossary on stone deterioration patterns Glossaire illustré sur les formes d’altération de la pierre

  13. Rautureau M (2001) Tendre comme la pierre. Centre et Université d’Orléans, Conseil régional

    Google Scholar 

  14. Brunet-Imbault B (1999) Etude des patines de pierres calcaires mises en oeuvre en région Centre. Université d’Orléans, Thèse de doctorat

    Google Scholar 

  15. Berthonneau J et al. (2012) Role of swelling clay minerals in the spalling decay mechanism of the ‘Pierre du Midi’ limestone (South-East of France). In: 12th International congress on the Deterioration and Conservation of Stone Columbia University, New York. [Online]. Available: https://www.researchgate.net/publication/273699200

  16. Gutiérrez J, Mas Á, Gil E, Galvañ V (2012) Clay-related damage in rainscreen walls built with natural stone coverings. Constr Build Mater 29:357–367. https://doi.org/10.1016/j.conbuildmat.2011.10.060

    Article  Google Scholar 

  17. Colas E (2011) Impact de l’humidité et des solutions salines sur le comportement dimensionnel de grèsdu Buntsandstein : contribution à la sélection de faciès de restauration. Université de Reims Champagne-Ardenne, Thèse de Doctorat

    Google Scholar 

  18. Benavente D, Cultrone G, Gomez-Heras M (2008) The combined influence of mineralogical, hygric and thermal properties on the durability of porous building stones. Eur J Mineral 20(4):673–685. https://doi.org/10.1127/0935-1221/2008/0020-1850

    Article  Google Scholar 

  19. Jeannette D (1992) Morphologie et nomenclature des altérations. La conservation de la pierre monumentale en France. Lefèvre, presses du CNRS, pp. 51–72

  20. Cautru J (1976) Le tuffeau de Touraine—etude de son altération. French report, BRGM Orléans—76 SGN 012 MTX

  21. Janvier-Badosa S, Beck K, Brunetaud X, Guirimand-Dufour A, Al-Mukhtar M (2015) Gypsum and spalling decay mechanism of tuffeau limestone. Environ Earth Sci 74(3):2209–2221. https://doi.org/10.1007/s12665-015-4212-2

    Article  Google Scholar 

  22. Hassine MA, Beck K, Brunetaud X, Al-Mukhtar M (2018) Strain measurements during capillary water infiltration in porous limestones. Constr Build Mater 175:439–447. https://doi.org/10.1016/j.conbuildmat.2018.04.182

    Article  Google Scholar 

  23. Idjaton K, Janvier R, Balawi M, Desquesnes X, Brunetaud X, Treuillet S (2023) Detection of limestone spalling in 3D survey images using deep learning. Autom Constr 152:104919. https://doi.org/10.1016/j.autcon.2023.104919

    Article  Google Scholar 

  24. Bompa DV, Elghazouli AY (2020) Compressive behaviour of fired-clay brick and lime mortar masonry components in dry and wet conditions. Mater Struct. https://doi.org/10.1617/s11527-020-01493-w

    Article  Google Scholar 

  25. Attia T, Di Benedetto H, Sauzéat C, Pouget S (2021) Behaviour of an interface between pavement layers obtained using digital image correlation. Mater Struct. https://doi.org/10.1617/s11527-021-01625-w

    Article  Google Scholar 

  26. Pham DT, Donval E, Pinoteau N, Pimienta P, Pallix D (2022) Test of loaded and unloaded natural stone masonry walls exposed to fire. Mater Struct. https://doi.org/10.1617/s11527-022-02058-9

    Article  Google Scholar 

  27. Cruz GKA, Arruda SM, de Melo Neto OM, de Lopes Lucena LCF (2024) Comparative analysis of lateritic and granitic aggregates in asphalt mixtures: morphological properties and performance implications. Innov Infrastruct Solut 9(5):150. https://doi.org/10.1007/s41062-024-01472-y

    Article  Google Scholar 

  28. Sutton MA, Walters J, Peters WH, Ranson WF, Mcneil SR (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139

    Article  Google Scholar 

  29. Sutton MA, McNeill SR, Helm JD, Chao YJ (2000) Two-dimensional and three-dimensional computer vision. In: Rastogi PK (ed) Photo-mechanics, vol 77. Springer, Berlin, pp 323–372. https://doi.org/10.1007/3-540-48800-6_10

    Chapter  Google Scholar 

  30. Lagarde A (ed) (2000) Advanced optical methods and applications in solid mechanics, vol 82. Springer, Dordrecht. https://doi.org/10.1007/0-306-46948-0_68

    Book  Google Scholar 

  31. Sutton MA, Orteu JJ, Shceier H (2009) Image correlation for shape, motion and deformation measurements basic concepts, theory and applications. Springer, Boston. https://doi.org/10.1007/978-0-387-78747-3

    Book  Google Scholar 

  32. Segouin V (2019) Développement d’un outil de correlation d’images numeriques pour la caractérisation du comportement piézoélectrique et ferroélectrique. Thèse de doctorat, Université Paris-Saclay—CentraleSupélec, 2019. [Online]. Available: https://hal-centralesupelec.archives-ouvertes.fr/tel-01943036v2

  33. iDICs (2018) A good practices guide for digital image correlation, Oct 2018. https://doi.org/10.32720/idics/gpg.ed1

  34. Canon EOS 5D mark IV instruction manual EOS 5D mark IV. [Online]. Available: www.canon.com/icpd

  35. AFNOR NF P94–07 Norme Française NF P94–077 essai de compression uniaxiale

  36. AFNOR NF P94–420 Norme française NF P94–420 roches determination de la résistance à la compression simple

  37. Beck K (2006) Étude des propriétés hydriques et des mécanismes d’altération de pierres calcaires à forte porosité. Université d’Orléans, Thèse de doctorat

    Google Scholar 

  38. Guéguen Y, Palciauskas V (1992) Introduction à la physique des roches. Hermann éditeurs des sciences et des arts, Paris

    Google Scholar 

  39. Beck K, Al-Mukhtar M (2004) The mechanical resistance properties of two limestones from France, Tuffeau and Sébastopol. Book Proc Dimens Stone 15:97–102

    Google Scholar 

  40. Reu P (2014) All about speckles: speckle size measurement. Exp Tech 38:1–2. https://doi.org/10.1111/ext.12110

    Article  Google Scholar 

  41. Reu P (2013) Stereo-rig design: lighting-part 5. Exp Tech 37:1–2. https://doi.org/10.1111/ext.12020

    Article  Google Scholar 

  42. Robertson AR (1968) Computation of correlated color temperature and distribution temperature. J Opt Soc Am 58(11):1528–1535

    Article  Google Scholar 

  43. Peterson B (2016) Understanding exposure: how to shoot great photographs with any camera. In: Amphoto Books, Fourth edition

  44. Eikosim (2021) Les principes de la corrélation d’images numériques, articles techniques. Accessed: Dec. 10, 2021. [Online]. Available: https://eikosim.com/category/articles-techniques/

  45. Hild F and Roux S (2008) CORRELI Q4: a software for ‘finite-element’ displacement field measurements by digital image correlation internal report no. 269, 2008

  46. Justin Blaber and Antonia Antoniou (2023) Ncorr open source 2D-DIC MATLAB software. Accessed: Aug. 17, 2023. [Online]. Available: http://www.ncorr.com/index.php

  47. J. RETHORE (2022) UFreckles—open-source DIC code. Accessed: Aug. 09, 2022. [Online]. Available: https://zenodo.org/record/1433776#.YvJ1RvjP1hE

  48. Reu P (2015) All about speckles: contrast. Exp Tech 39(1):1–2. https://doi.org/10.1111/ext.12126

    Article  Google Scholar 

  49. Eikosim Comment réaliser un mouchetis adapté à la corrélation d’images numériques? articles techniques

  50. Reu P (2014) All about speckles: aliasing. Exp Tech 38(5):1–3. https://doi.org/10.1111/ext.12111

    Article  Google Scholar 

  51. Reu P (2012) Hidden components of DIC: calibration and shape function—part 1. Exp Tech 36(2):3–5. https://doi.org/10.1111/j.1747-1567.2012.00821.x

    Article  Google Scholar 

  52. Al-Omari A, Brunetaud X, Beck K, Al-Mukhtar M (2014) Coupled thermal-hygric characterisation of elastic behaviour for soft and porous limestone. Constr Build Mater 62:28–37. https://doi.org/10.1016/j.conbuildmat.2014.03.029

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Centre Val de Loire Region of France, within the framework of the scientific project DETRESSE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Daher.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daher, M., Brunetaud, X., Gillibert, J. et al. Study of porous limestone mechanical behavior with digital image correlation: calibration and validation. Mater Struct 57, 146 (2024). https://doi.org/10.1617/s11527-024-02419-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-024-02419-6

Keywords

Navigation