Log in

Behaviour of high-performance alkali-activated slag concrete-filled double-skin steel tubes under compression loading

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This study investigates the behaviour of high-performance alkali-activated slag concrete-filled double steel tubular (HACFDST) columns under axial compression. Utilizing high-performance alkali-activated slag concrete (HPAASC) in concrete-filled double steel tubes (CFDST) results in an innovative composite member combining the benefits of both technological domains. HPAASC, a sustainable substitute for conventional concrete, contributes to improved environmental friendliness, while CFDST enhances structural capabilities. Fourteen HACFDST specimens, comprising six circular and eight square sections, were tested to enhance our understanding of the structural performance of HACFDST members through experimental and numerical methodologies. A numerical model was proposed to predict the behaviour of circular and square HACFDST columns under axial compression. The assessment of experimental and numerical findings demonstrates that the proposed numerical model accurately forecasts the behavior of axially loaded HACFDST columns with circular and square sections. Increasing the L/Do or L/B ratio of the specimen results in decreased axial stiffness but enhances ductility. Additionally, beyond peak strength, square HACFDST columns exhibit a sharper decline in strength compared to their circular counterparts. As the L/Do or L/B ratio of HACFDST specimens increases from 2.88 to 7.95, the compressive strength index decreases from 1.28 to 1.2, emphasizing the need to optimize specimen dimensions to maximize the benefits of steel tube confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The information produced throughout the research can be obtained from the authors upon a reasonable request.

Abbreviations

A c :

Cross-sectional area of concrete

A s :

Cross-sectional area of the steel tube

B :

Width ‘or’ depth of square steel tube

D o :

Outer diameter of circular steel tube

DI :

Ductility index

E c :

Modulus of elasticity of unconfined concrete

E cc :

Modulus of elasticity of confined concrete

E s :

Modulus of elasticity of steel

f cc′:

Compressive strength of confined concrete

f :

Stress

f c′:

Compressive strength of concrete cylinder

f cu :

Compressive strength of concrete cube after 28 days of air curing

f l :

Confining pressure

f yi :

Yield strength of the inner steel tube

f ui :

Ultimate strength of inner steel tube

f yo :

Yield strength of outer steel tube

f uo :

Ultimate strength of outer steel tube

f e :

Strength of confined concrete corresponding to εe

f u′:

Residual ultimate strength of confined concrete given by Saenz et al.

f up′:

Proposed residual ultimate strength of confined concrete

K axial :

Axial stiffness

k 3 :

Reduction factor

L :

Specimen length

m :

Reduction parameter

Ms :

Activation modulus

NaOH :

Sodium hydroxide

P y :

Yield load of a HACFDST column

P u :

Ultimate load of a HACFDST column

P n :

Nominal load of a HACFDST column

P u,test :

Ultimate load of a column determined through experiments

P u, FEA :

Ultimate load of a column determined through FEA

R σ :

Stress ratio

R ε :

Strain ratio

R :

Ratio relation

R E :

Modular ratio

r :

Reduction coefficient

SD :

Standard deviation

SI :

Compressive strength index

t i :

Wall thickness of the inner steel tube

t o :

Wall thickness of the outer steel tube

w/b :

Water-to-binder ratio

ε :

Strain

\({\varepsilon }_{c}^{\prime}\) :

Strain corresponding to \({f}_{c}^{\prime}\)

\({\varepsilon }_{cc}^{\prime}\) :

Strain corresponding to \({f}_{cc}^{\prime}\)

\({\varepsilon }_{e}\) :

Strain corresponding to \({f}_{e}\)

\({\varepsilon }_{ui}\) :

Ultimate strain of inner steel tube

\({\varepsilon }_{uo}\) :

Ultimate strain of outer steel tube

\({\varepsilon }_{u}^{\prime}\) :

Strain corresponding to \({f}_{up}^{\prime}\)

μ :

Ductility index

:

Axial shortening/displacement of a column

References

  1. Jokar Z, Mokhtar A (2018) Policy making in the cement industry for CO2 mitigation on the pathway of sustainable development-A system dynamics approach. J Clean Prod 201:142–155. https://doi.org/10.1016/j.jclepro.2018.07.286

    Article  Google Scholar 

  2. Hossain MU, Poon CS, Kwong Wong MY, Khine A (2019) Techno-environmental feasibility of wood waste derived fuel for cement production. J Clean Prod 230:663–671. https://doi.org/10.1016/j.jclepro.2019.05.132

    Article  Google Scholar 

  3. Ali MB, Saidur R, Hossain MS (2011) A review on emission analysis in cement industries. Renew Sustain Energy Rev 15:2252–2261. https://doi.org/10.1016/j.rser.2011.02.014

    Article  Google Scholar 

  4. Yang KH, Song JK, Il Song K (2013) Assessment of CO2 reduction of alkali-activated concrete. J Clean Prod 39:265–272. https://doi.org/10.1016/J.JCLEPRO.2012.08.001

    Article  Google Scholar 

  5. Mithun BM, Narasimhan MC (2016) Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate. J Clean Prod 112:837–844. https://doi.org/10.1016/j.jclepro.2015.06.026

    Article  Google Scholar 

  6. Manjunath R, Narasimhan MC, Umesha KM (2019) Studies on high performance alkali activated slag concrete mixes subjected to aggressive environments and sustained elevated temperatures. Constr Build Mater. https://doi.org/10.1016/J.CONBUILDMAT.2019.116887

    Article  Google Scholar 

  7. Akçaözoğlu S, Çiflikli M, Bozkaya Ö, Atiş CD, Ulu C (2022) Examination of mechanical properties and microstructure of alkali activated slag and slag-metakaolin blends exposed to high temperatures. Struct Concr 23:1273–1289. https://doi.org/10.1002/suco.202000080

    Article  Google Scholar 

  8. Lyu WQ, Han LH (2019) Investigation on bond strength between recycled aggregate concrete (RAC) and steel tube in RAC-filled steel tubes. J Constr Steel Res 155:438–459. https://doi.org/10.1016/j.jcsr.2018.12.028

    Article  Google Scholar 

  9. Kwan AKH, Dong CX, Ho JCM (2016) Axial and lateral stress–strain model for circular concrete-filled steel tubes with external steel confinement. Eng Struct 117:528–541. https://doi.org/10.1016/j.engstruct.2016.03.026

    Article  Google Scholar 

  10. Ekmekyapar T (2016) Experimental performance of concrete filled welded steel tube columns. J Constr Steel Res 117:175–184. https://doi.org/10.1016/j.jcsr.2015.10.013

    Article  Google Scholar 

  11. Han LH, Li W, Bjorhovde R (2014) Developments and advanced applications of concrete-filled steel tubular (CFST) structures: members. J Constr Steel Res 100:211–228. https://doi.org/10.1016/j.jcsr.2014.04.016

    Article  Google Scholar 

  12. Liu F, Gardner L, Yang H (2014) Post-fire behaviour of reinforced concrete stub columns confined by circular steel tubes. J Constr Steel Res 102:82–103. https://doi.org/10.1016/j.jcsr.2014.06.015

    Article  Google Scholar 

  13. Sun Y, Xu J, Zuo G (2023) Experimental and numerical studies on mechanical behavior of stiffened concrete-filled square steel tube columns subjected to axial compression. Struct Concr 24:802–817. https://doi.org/10.1002/suco.202200224

    Article  Google Scholar 

  14. Rahmani Z, Naghipour M, Nematzadeh M (2021) Structural behavior of prestressed self-compacting concrete-encased concrete-filled steel tubes beams. Struct Concr 22:2011–2028. https://doi.org/10.1002/suco.202000184

    Article  Google Scholar 

  15. Dong CX, Kwan AKH, Ho JCM (2017) Effects of external confinement on structural performance of concrete-filled steel tubes. J Constr Steel Res 132:72–82. https://doi.org/10.1016/j.jcsr.2016.12.024

    Article  Google Scholar 

  16. Mander JB, Priestley MJ, Park R (1988) Theoretical stress–strain model for confined concrete. J Struct Eng 114(8):1804–1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)

    Article  Google Scholar 

  17. Attard MM, Setunge S (1996) Stress–strain relationship of confined and unconfined concrete. ACI Mater J 93:432–442. https://doi.org/10.14359/9847

    Article  Google Scholar 

  18. Rehmat S, Sadeghnejad A, Mantawy IM, Azizinamini A (2021) Experimental study on concrete filled steel tubes to footing connection using ultra-high performance concrete. Eng Struct 242:112540. https://doi.org/10.1016/j.engstruct.2021.112540

    Article  Google Scholar 

  19. Tang Y, Zhu M, Chen Z, Wu C, Chen B, Li C, Li L (2022) Seismic performance evaluation of recycled aggregate concrete-filled steel tubular columns with field strain detected via a novel mark-free vision method. Structures 37:426–441. https://doi.org/10.1016/j.istruc.2021.12.055

    Article  Google Scholar 

  20. Tao Z, Song TY, Uy B, Han LH (2016) Bond behavior in concrete-filled steel tubes. J Constr Steel Res 120:81–93. https://doi.org/10.1016/j.jcsr.2015.12.030

    Article  Google Scholar 

  21. Qiang Z, Yaozhuang L, Kolozvari K (2018) Numerical modeling of steel–concrete composite structures. Struct Concr 19:1727–1739. https://doi.org/10.1002/suco.201700094

    Article  Google Scholar 

  22. Tran VL, Ahmed M, Gohari S (2023) Prediction of the ultimate axial load of circular concrete-filled stainless steel tubular columns using machine learning approaches. Struct Concr. https://doi.org/10.1002/suco.202200877

    Article  Google Scholar 

  23. Tao Z, Cao YF, Pan Z, Hassan MK (2018) Compre ssive behaviour of geopolymer concrete-filled steel columns at ambient and elevated temperatures. Int J High-Rise Build 7:327–342. https://doi.org/10.21022/IJHRB.2018.7.4.327

    Article  Google Scholar 

  24. Katwal U, Aziz T, Tao Z, Uy B, Rahme D (2022) Tests of circular geopolymer concrete-filled steel columns under ambient and fire conditions. J Constr Steel Res 196:107393. https://doi.org/10.1016/j.jcsr.2022.107393

    Article  Google Scholar 

  25. Fang H, Visintin P (2021) Behavior of geopolymer concrete-filled circular steel tube members. Ce/Papers 4:593–597. https://doi.org/10.1002/cepa.1336

    Article  Google Scholar 

  26. Fang H, Visintin P (2022) Structural performance of geopolymer-concrete-filled steel tube members subjected to compression and bending. J Constr Steel Res 188:107026. https://doi.org/10.1016/j.jcsr.2021.107026

    Article  Google Scholar 

  27. Gkantou M, Georgantzia E, Kadhim A, Kamaris GS, Sadique M (2023) Geopolymer concrete-filled aluminium alloy tubular cross-sections. Structures 51:528–543. https://doi.org/10.1016/j.istruc.2023.02.117

    Article  Google Scholar 

  28. Hui C, Zhang Y, Wang Y, Hai R (2023) Test study on axial compression behavior of GCFST columns under unidirectional repeated load. Int J Steel Struct. https://doi.org/10.1007/s13296-023-00751-1

    Article  Google Scholar 

  29. Noushini A, Aslani F, Castel A, Gilbert RI, Uy B, Foster S (2016) Compressive stress–strain model for low-calcium fly ash-based geopolymer and heat-cured Portland cement concrete. Cem Concr Compos 73:136–146. https://doi.org/10.1016/j.cemconcomp.2016.07.004

    Article  Google Scholar 

  30. Thomas RJ, Peethamparan S (2015) Alkali-activated concrete: engineering properties and stress–strain behavior. Constr Build Mater 93:49–56. https://doi.org/10.1016/j.conbuildmat.2015.04.039

    Article  Google Scholar 

  31. Zhu T, Liang H, Lu Y, Li W, Zhang H (2020) Axial behaviour of slender concrete-filled steel tube square columns strengthened with square concrete-filled steel tube jackets. Adv Struct Eng 23:1074–1086. https://doi.org/10.1177/1369433219888726

    Article  Google Scholar 

  32. Yuan F, Huang H, Chen M (2019) Behaviour of square concrete-filled stiffened steel tubular stub columns under axial compression. Adv Struct Eng 22:1878–1894. https://doi.org/10.1177/1369433218819584

    Article  Google Scholar 

  33. Ci J, Ahmed M, Tran VL, Jia H, Chen S (2022) Axial compressive behavior of circular concrete-filled double steel tubular short columns. Adv Struct Eng 25:259–276. https://doi.org/10.1177/13694332211046345

    Article  Google Scholar 

  34. Chen S, Ahmed M, Ci J, Chen W, Sennah K (2022) Behavior and design of axially loaded square concrete-filled double steel tubular slender columns. Adv Struct Eng 25:2953–2965. https://doi.org/10.1177/13694332221113041

    Article  Google Scholar 

  35. Ouyang Y, Zeng JJ, Li LG, Kwan AKH (2020) Influence of concrete mix proportions on axial performance of concrete-filled steel tubes made with self-compacting concrete. Adv Struct Eng 23:835–846. https://doi.org/10.1177/1369433219884457

    Article  Google Scholar 

  36. Kumar S, Kumar Gupta P, Ashraf Iqbal M (2023) An experimental study on the development of self-compacting alkali-activated slag concrete mixes under ambient curing. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.03.558

    Article  Google Scholar 

  37. Manjunath R, Narasimhan MC, Umesh KM, Shivam Kumar UK, Bharathi Bala (2019) Studies on development of high performance, self-compacting alkali activated slag concrete mixes using industrial wastes. Constr Build Mater 198:133–147. https://doi.org/10.1016/J.CONBUILDMAT.2018.11.242

    Article  Google Scholar 

  38. Kumar S, Gupta PK, Iqbal MA (2023) Parametric sensitivity analysis of high-strength self-compacting alkali-activated slag concrete for enhanced microstructural and mechanical performance. J Sci Technol Trans Civ Eng, Iran. https://doi.org/10.1007/s40996-023-01227-2

    Book  Google Scholar 

  39. IS 516: Part 1, Sec 1 (2021) Hardened concrete methods of test part 1 testing of strength of hardened concrete section 1 compressive, flexucal and split tensile strength

  40. IS: 1608, Mechanical testing of metals–Tensile Testing, Bur. Indian Stand. New Delhi, India. (2005)

  41. Han LH, Yao GH, Zhao XL (2005) Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC). J Constr Steel Res 61:1241–1269. https://doi.org/10.1016/j.jcsr.2005.01.004

    Article  Google Scholar 

  42. Cihan Yilmaz BC, Binbir E, Guzelbulut C, Yildirim H, Celik OC (2023) Circular concrete-filled double skin steel tubes under concentric compression: tests and FEA parametric study. Compos Struct 309:116765. https://doi.org/10.1016/j.compstruct.2023.116765

    Article  Google Scholar 

  43. Kumar S, Gupta PK, Iqbal MA (2024) Experimental and numerical study on self-compacting alkali-activated slag concrete-filled steel tubes. J Constr Steel Res 214:108453. https://doi.org/10.1016/j.jcsr.2024.108453

    Article  Google Scholar 

  44. Hasan HG, Ekmekyapar T (2019) Mechanical performance of stiffened concrete filled double skin steel tubular stub columns under axial compression. KSCE J Civ Eng 23:2281–2292. https://doi.org/10.1007/s12205-019-1313-6

    Article  Google Scholar 

  45. Li JT, Chen ZP, Xu JJ, **g CG, Xue JY (2018) Cyclic behavior of concrete-filled steel tubular column–reinforced concrete beam frames incorporating 100% recycled concrete aggregates. Adv Struct Eng 21:1802–1814. https://doi.org/10.1177/1369433218755521

    Article  Google Scholar 

  46. Ho JCM, Ou XL, Li CW, Song W, Wang Q, Lai MH (2021) Uni-axial behaviour of expansive CFST and DSCFST stub columns. Eng Struct. https://doi.org/10.1016/j.engstruct.2021.112193

    Article  Google Scholar 

  47. Gupta PK, Sarda SM, Kumar MS (2007) Experimental and computational study of concrete filled steel tubular columns under axial loads. J Constr Steel Res 63:182–193. https://doi.org/10.1016/j.jcsr.2006.04.004

    Article  Google Scholar 

  48. Lin S, Zhao YG, He L (2018) Stress paths of confined concrete in axially loaded circular concrete-filled steel tube stub columns. Eng Struct 173:1019–1028. https://doi.org/10.1016/j.engstruct.2018.06.112

    Article  Google Scholar 

  49. Dong M, Elchalakani M, Karrech A, Fawzia S, Mohamed Ali MS, Yang B, Xu SQ (2019) Circular steel tubes filled with rubberised concrete under combined loading. J Constr Steel Res 162:105613. https://doi.org/10.1016/j.jcsr.2019.05.003

    Article  Google Scholar 

  50. Heaven Singh, (2014) behaviour of concrete filled steel tubular columns with different cross-sections, 667

  51. ACI 318-19(22) Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, 2019 (Reapproved 2022)

  52. Mander JB, Priestley MJN, Park R (1989) conducted providing the stress–strain relation for the concrete and steel are- known. The moments and curvatures associated with increasing flexural deformations of the column may be computed for various column axial loads by incrementing the curvature a. J Struct Eng 114:1804–1826

    Article  Google Scholar 

  53. Richart RL, Erwin Frank, Brandtzæg, Anton, Brown (1928) A study of the failure of concrete under combined compressive stresses. Univ Illinois Eng Exp Station Bull 26:12

    Google Scholar 

  54. Hu HT, Su FC (2011) Nonlinear analysis of short concrete-filled double skin tube columns subjected to axial compressive forces. Mar Struct 24:319–337. https://doi.org/10.1016/j.marstruc.2011.05.001

    Article  Google Scholar 

  55. Hu H-T, Huang C-S, Wu M-H, Wu Y-M (2003) Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect. J Struct Eng 129:1322–1329. https://doi.org/10.1061/(asce)0733-9445(2003)129:10(1322)

    Article  Google Scholar 

  56. Saenz LP (1964) Discussion of Equation for the stress–strain curve of concrete by P. Desaui and S Krishnan ACI Journal 61:1229–1235

    Google Scholar 

  57. Hu HT, Schnobrich WC (1989) Constitutive modeling of concrete by using nonassociated plasticity. J Mater Civ Eng 1(4):199–216

  58. Ding Y, Dai JG, Shi CJ (2018) Fracture properties of alkali-activated slag and ordinary Portland cement concrete and mortar. Constr Build Mater 165:310–320. https://doi.org/10.1016/j.conbuildmat.2017.12.202

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the technical staff at the Structural Engineering lab, computational mechanics lab and Institute Computer Centre of the Indian Institute of Technology Roorkee for supporting this study.

Author information

Authors and Affiliations

Authors

Contributions

Shivam Kumar: Investigation, Conceptualization, Methodology, Validation, Writing—original draft. Pramod Kumar Gupta: Supervision, Resources, Writing—review & editing. Mohd. Ashraf Iqbal: Supervision, Resources.

Corresponding author

Correspondence to Shivam Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Gupta, P.K. & Iqbal, M.A. Behaviour of high-performance alkali-activated slag concrete-filled double-skin steel tubes under compression loading. Mater Struct 57, 133 (2024). https://doi.org/10.1617/s11527-024-02407-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-024-02407-w

Keywords

Navigation