Log in

Use of laser-induced graphene and magnetite nanoparticles as anchors in electrochemical glucose detection devices

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

This study effectively utilizes ion-sensitive field-effect transistor (ISFET) technology to detect enzymatic oxidation reactions. The research presents a method for immobilizing glucose oxidase (GOD) enzymes by activating groups that covalently attach to magnetite nanoparticles coated with a silicon oxide containing carboxyl groups (F-NPs). Amperometry techniques are utilized to detect glucose concentrations on the ISFET gate area through incubation with carbodiimides (EDC) and succinimides (NHS). The ISFET device comprises the organic semiconductors (P3HT/PC71BM) on an indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrate for source and drain electrodes. A PET-ITO gate electrode improves the gate configuration by utilizing dual gates: one on the semiconductor layer and another on a laser-induced graphene (LIG) pattern, interconnected for immobilization platform (PI) which can detect changes in solution load different glucose levels. IV saturation curves display a continual ISFET drain current decrease with increasing glucose concentration, confirming efficacy as a glucose sensor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Experiments and measurements were carried out in two teaching laboratories: ESFM and CNMN, which are both affiliated with the Instituto Politecnico Nacional. The following personnel conducted the measurements: M. Sc. Luis Alberto Moreno Ruiz carried out the FTIR spectroscopy, the TEM and SEM analysis were performed Ph.D Hugo Martínez Gutierrez and Ph.D Nicolas Cayetano Castro. For access to the data produced or examined in this study, please consult the responsible persons upon reasonable request. Additionally, for comprehensive details about the processes of synthesis, characterization, and device construction, please refer to the postgraduate thesis repository. The study will be entitled “Funcionalización de nanopartículas magneticas para la inmobilización de antígenos” and will be part of the PhD program in Nanosciences and Micro-Nanotechnologies at the ENCB-IPN, with expected availability in June 2024.

References

  1. «Diabetes». Accedido: 25 de agosto de 2023. [En línea]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/diabetes

  2. K.-Y. Park, S.-B. Choi, M. Lee, B.-K. Sohn, S.-Y. Choi, ISFET glucose sensor system with fast recovery characteristics by employing electrolysis. Sens. Actuators B 83(1–3), 90–97 (2002). https://doi.org/10.1016/S0925-4005(01)01049-8

    Article  CAS  Google Scholar 

  3. S. Ayaz, A. Üzer, Y. Dilgin, M.R. Apak, Fabrication of a novel optical glucose biosensor using Copper(II) neocuproine as a chromogenic oxidant and glucose dehydrogenase-immobilized magnetite nanoparticles. ACS Omega 8(49), 47163–47172 (2023). https://doi.org/10.1021/acsomega.3c07181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. H. Yang, Y. Zhu, Size dependence of SiO2 particles enhanced glucose biosensor. Talanta 68(3), 569–574 (2006). https://doi.org/10.1016/j.talanta.2005.04.057

    Article  CAS  PubMed  Google Scholar 

  5. L. Mei, Y. Yang, J. Li, S. Shang, X. Fu, A SiO2 hybrid enzyme-based biosensor with enhanced electrochemical stability for accuracy detection of glucose. Int. J. Anal. Chem. 2023, 1–8 (2023). https://doi.org/10.1155/2023/6620613

    Article  CAS  Google Scholar 

  6. B.-K. Sohn, B.-W. Cho, C.-S. Kim, D.-H. Kwon, ISFET glucose and sucrose sensors by using platinum electrode and photo-crosslinkable polymers. Sens. Actuators B 41(1–3), 7–11 (1997). https://doi.org/10.1016/S0925-4005(97)80271-7

    Article  CAS  Google Scholar 

  7. T.I. Shabatina, O.I. Vernaya, V.P. Shabatin, M.Y. Melnikov, Magnetic nanoparticles for biomedical purposes: modern trends and prospects. Magnetochemistry 6(3), 30 (2020). https://doi.org/10.3390/magnetochemistry6030030

    Article  CAS  Google Scholar 

  8. C.T. Tracey et al., Hybrid cellulose nanocrystal/magnetite glucose biosensors. Carbohydr. Polym. 247, 116704 (2020). https://doi.org/10.1016/j.carbpol.2020.116704

    Article  CAS  PubMed  Google Scholar 

  9. J. Jaime, G. Rangel, A. Muñoz-Bonilla, A. Mayoral, P. Herrasti, Magnetite as a platform material in the detection of glucose, ethanol and cholesterol. Sens. Actuators B 238, 693–701 (2017). https://doi.org/10.1016/j.snb.2016.07.059

    Article  CAS  Google Scholar 

  10. A.-G. Niculescu, C. Chircov, A.M. Grumezescu, Magnetite nanoparticles: synthesis methods—a comparative review. Methods 199, 16–27 (2022). https://doi.org/10.1016/j.ymeth.2021.04.018

    Article  CAS  PubMed  Google Scholar 

  11. S. Liu, B. Yu, S. Wang, Y. Shen, H. Cong, Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Adv. Colloid Interface Sci. 281, 102165 (2020). https://doi.org/10.1016/j.cis.2020.102165

    Article  CAS  PubMed  Google Scholar 

  12. T. Radu, A. Petran, D. Olteanu, I. Baldea, M. Potara, R. Turcu, Evaluation of physico-chemical properties and biocompatibility of new surface functionalized Fe3O4 clusters of nanoparticles. Appl. Surf. Sci. 501, 144267 (2020). https://doi.org/10.1016/j.apsusc.2019.144267

    Article  CAS  Google Scholar 

  13. A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18), 3995–4021 (2005). https://doi.org/10.1016/j.biomaterials.2004.10.012

    Article  CAS  PubMed  Google Scholar 

  14. R. Eivazzadeh-Keihan et al., Functionalized magnetic nanoparticles for the separation and purification of proteins and peptides. TrAC Trends Anal. Chem. 141, 116291 (2021). https://doi.org/10.1016/j.trac.2021.116291

    Article  CAS  Google Scholar 

  15. S.K. Vashist, Comparison of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide based strategies to crosslink antibodies on amine-functionalized platforms for immunodiagnostic applications. Diagnostics 2(3), 23–33 (2012). https://doi.org/10.3390/diagnostics2030023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. C. Haavik, S. Stølen, H. Fjellvåg, M. Hanfland, D. Häusermann, Equation of state of magnetite and its high-pressure modification: thermodynamics of the Fe-O system at high pressure. Am. Mineral. 85(3–4), 514–523 (2000). https://doi.org/10.2138/am-2000-0413

    Article  CAS  Google Scholar 

  17. B.A. Wechsler, D.H. Lindsley, C.T. Prewitt, Crystal structure and cation distribution in titanomagnetites (Fe3-xTixO4). Am. Mineral. 69(7–8), 754–770 (1984)

    CAS  Google Scholar 

  18. L. Levien, C.T. Prewitt, D.J. Weidner, Structure and elastic properties of quartz at pressure. Am. Mineral. 65(9–10), 920–930 (1980)

    CAS  Google Scholar 

  19. M. J. Buerger, Mineralogy: Danas System of Mineralogy, ed. by C. Palache, H. Berman, C. Frondel. Seventh Edition, Volume I, Elements, Sulfides, Sulfosalts, Oxides. (Wiley, New York, vol. 101, no. 2634, 1945), pp. 650–652. https://doi.org/10.1126/science.101.2634.650

  20. F.T. Johra, J.-W. Lee, W.-G. Jung, Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 20(5), 2883–2887 (2014). https://doi.org/10.1016/j.jiec.2013.11.022

    Article  CAS  Google Scholar 

  21. M. Liu et al., Bimetallic AuPt/TiO2 catalysts for direct oxidation of glucose and gluconic acid to tartaric acid in the presence of molecular O2. ACS Catal. 10(19), 10932–10945 (2020). https://doi.org/10.1021/acscatal.0c02238

    Article  CAS  Google Scholar 

  22. N.A. ElSayed et al., Glycemic targets: standards of care in diabetes. Diabetes Care 46(Suppl 1), S97–S110 (2022). https://doi.org/10.2337/dc23-S006

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

GLAB is grateful to Consejo Nacional de Humanidades Ciencias y Tecnologías (CONAHCyT) for its financial support throughout her adscription to the doctoral program of nanosciences. HMG and RGA are grateful to COFAA-IPN, EDD-IPN, and EDI-IPN for support through academic fellowships.

Funding

The Instituto Politécnico Nacional (IPN) and the Secretaría de Investigación and Posgrado (SIP) supplied financial support for this research through projects numbered 20231885 and 20231318.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. GLAB performed the synthesis, device construction and the electrical and morphological analysis. JPAG and RGA collected electrical data for the IV curves. HMG acquired micrographs of the materials. The first draft of the manuscript was written by GLAB, and all authors commented on earlier versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gabriela L. Araujo-Bernal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8611 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo-Bernal, G.L., Aguilar-González, J.P., Martínez-Gutiérrez, H. et al. Use of laser-induced graphene and magnetite nanoparticles as anchors in electrochemical glucose detection devices. MRS Advances 9, 161–167 (2024). https://doi.org/10.1557/s43580-024-00832-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-024-00832-1

Navigation