Log in

Microscale techniques for investigating the chemistry and energy release of reactive materials

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Microscale techniques for relatively inexpensive, high-throughput characterization of novel reactive materials using minimal quantities of sample are desirable. We have developed microscale techniques for evaluating the potential suitability of reactive materials in energetic formulations and increasing our fundamental understanding of the relationship between the structure and chemistry of reactive materials and their sensitivity or energy release behavior. To evaluate the influence of structural properties on the sensitivity of reactive materials, electrostatic discharge, impact, and friction tests with quantitative diagnostic measurements using an order of magnitude less material than military standard specifications have been developed. The laser-induced air shock from energetic materials (LASEM) method enables us to compare the energy release of milligrams of material on the microsecond and millisecond timescales via high-heating rate excitation with a nanosecond-pulsed laser. Finally, we report on recent efforts to develop a microscale technique for evaluating the impetus of novel materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets presented in this manuscript are available from the corresponding author upon reasonable request, pending release approval from the DEVCOM Army Research Laboratory.

References

  1. J.L. Gottfried, E.R. Wainwright, Laser-induced air shock from energetic materials (LASEM): a novel microscale technique for characterizing energy release at high heating rates. J. Energ. Mater. (2023). https://doi.org/10.1080/07370652.2023.2200442

    Article  Google Scholar 

  2. Department of Defense Test Method Standard: Safety and performance tests for the qualification of explosives (high explosives, propellants, and pyrotechnics), Report No. MIL-STD-1751A, 2001.

  3. E. Beloni, E.L. Dreizin, Ignition of aluminum powders by electro-static discharge. Combust. Flame 157(7), 1346–1355 (2010)

    Article  CAS  Google Scholar 

  4. F.W. Marrs, V.W. Manner, A.C. Burch, J.D. Yeager, G.W. Brown, L.M. Kay, R.T. Buckley, C.M. Anderson-Cook, M.J. Cawkwell, Sources of variation in drop-weight impact sensitivity testing of the explosive pentaerythritol tetranitrate. Industrial Eng. Chem. Res. 60(13), 5024–5033 (2021)

    Article  CAS  Google Scholar 

  5. C. A-M. Dillier, E. R. Wainwright, and J. L. Gottfried, Microscale Electrostatic Discharge Sensitivity Testing and Evaluation of Aluminum Powders, Report No. ARL-TR-9501 (DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD), July 2022.

  6. C. Dillier, E. Wainwright, and J. Gottfried, Microscale Electrostatic Discharge (ESD) Sensitivity Characterization of Energetic Materials, presented at the APS SCCM, Pittsburgh, PA, 18–22 Jun 2023.

  7. J.L. Gottfried, Influence of exothermic chemical reactions on laser-induced shock waves. Phys. Chem. Chem. Phys. 16, 21452–21466 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. J.L. Gottfried, E.J. Bukowski, Laser-shocked energetic materials with metal additives: evaluation of chemistry and detonation performance. Appl. Opt. 56(3), B47–B57 (2017)

    Article  CAS  PubMed  Google Scholar 

  9. J.L. Gottfried, Laboratory-scale method for estimating explosive performance from laser-induced shock waves. Propellants Explos. Pyrotech. 40(5), 674–681 (2015)

    Article  CAS  Google Scholar 

  10. J.L. Gottfried, T.M. Klapötke, T.G. Witkowski, Estimated detonation velocities for TKX-50, MAD-X1, BDNAPM, BTNPM, TKX-55 and DAAF using the laser-induced air shock from energetic materials technique. Propellants Explos. Pyrotech. 42, 353–359 (2017)

    Article  CAS  Google Scholar 

  11. Y. Hu, Z. Liu, C.-C. Wu, J.L. Gottfried, R. Pesce-Rodriguez, S.D. Walck, P.W. Chung, S. Ren, Chemically driven energetic molecular ferroelectrics. Nature Comm. 12, 5696 (2021)

    Article  CAS  Google Scholar 

  12. Y. Hu, J.L. Gottfried, R. Pesce-Rodriguez, C.-C. Wu, S.D. Walck, Z. Liu, S. Balakrishnan, S. Broderick, Z. Guo, Q. Zhang, L. An, R. Adlakha, M. Nouh, C. Zhou, P.W. Chung, S. Ren, Releasing chemical energy in spatially programmed ferroelectrics. Nature Comm. 13(1), 6959 (2022)

    Article  CAS  Google Scholar 

  13. Y. Huang, J.L. Gottfried, A. Sarkar, G. Zhang, H. Lin, S. Ren, Proton-controlled molecular ionic ferroelectrics. Nature Comm. 14(1), 5041 (2023)

    Article  CAS  Google Scholar 

  14. X. Wang, Y. He, W. Cao, W. Guo, T. Zhang, J. Zhang, Q. Shu, X. Guo, R. Liu, Y. Yao, Fast explosive performance prediction via small-dose energetic materials based on time-resolved imaging combined with machine learning. J. Mater. Chem. A 10, 13114–13123 (2022)

    Article  CAS  Google Scholar 

  15. X. Wang, R. Liu, Y. He, Y. Fu, J. Wang, A. Li, X. Guo, M. Wang, W. Guo, T. Zhang, Q. Shu, Y. Yao, Determination of detonation characteristics by laser-induced plasma spectra and micro-explosion dynamics. Opt. Express 30(4), 4718–4736 (2022)

    Article  CAS  PubMed  Google Scholar 

  16. J.L. Gottfried, S.W. Dean, E.S. Collins, C.-C. Wu, Estimating the relative energy content of reactive materials using nanosecond-pulsed laser ablation. MRS Adv. 3(17), 875–886 (2018)

    Article  CAS  Google Scholar 

  17. J.L. Gottfried, D.K. Smith, C.-C. Wu, M.L. Pantoya, Improving the explosive performance of aluminum nanoparticles with aluminum iodate hexahydrate (AIH). Sci. Rep. 8, 8036 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Y. Jiang, S. Deng, S. Hong, J. Zhao, S. Huang, C.-C. Wu, J.L. Gottfried, K.-I. Nomura, Y. Li, S.C. Tiwari, R.K. Kalia, P. Vashishta, A. Nakano, X. Zheng, Energetic performance of optically activated aluminum/graphene oxide composites. ACS Nano 12, 11366–11375 (2018)

    Article  CAS  PubMed  Google Scholar 

  19. K.K. Miller, J.L. Gottfried, S.D. Walck, M.L. Pantoya, C.-C. Wu, Plasma surface treatment of aluminum nanoparticles for energetic material applications. Combust. Flame 206, 211–213 (2019)

    Article  CAS  Google Scholar 

  20. S.A. Davari, J.L. Gottfried, C. Liu, E.L. Ribeiro, G. Duscher, D. Mukherjee, Graphitic-coated Al nanoparticles manufactured as superior energetic materials via laser ablation synthesis in organic solvents. Appl. Surf. Sci. 473, 156–163 (2019)

    Article  CAS  Google Scholar 

  21. E.R. Wainwright, S.W. Dean, S.V. Lakshman, T.P. Weihs, J.L. Gottfried, Evaluating compositional effects on the laser-induced combustion and shock velocities of Al/Zr-based composite fuels. Combust. Flame 213, 357–368 (2019)

    Article  Google Scholar 

  22. J.L. Gottfried, E.R. Wainwright, S. Huang, Y. Jiang, X. Zheng, Probing boron thermite energy release at rapid heating rates. Combust. Flame 231, 111491 (2021)

    Article  CAS  Google Scholar 

  23. F.-Y. Guan, H. Ren, W.-J. Zhao, X.-Z. Wu, Q.-J. Jiao, Novel aluminum-based fuel: facile preparation to improve thermal reactions. Def. Technol. 18(10), 1852–1862 (2022)

    Article  Google Scholar 

  24. Y. Li, H. Ren, X. Wu, H. Wang, X. Yu, Nitrogen-rich energetic polymer powered aluminum particles with enhanced reactivity and energy content. Sci. Rep. 12(1), 8893 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. E. R. Wainwright, N. Deo, and J. L. Gottfried, Toward the Use of Surrogate Post-Detonation Gas Mixtures to Study Aluminum LaserInduced Plasma Chemistry, Report No. ARL-TR-9890 (DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD), Mar 2024.

  26. E.R. Wainwright, C.J. Miller, J.L. Gottfried, Acoustic responses from metal powders reacting in a laser-induced plasma. Appl. Phys. A 127, 813 (2021)

    Article  CAS  Google Scholar 

  27. E. R. Wainwright and J. L. Gottfried, Novel Reactive Materials: A Cross-Cutting Comparison of Microsecond Energy Release Performance under High Energy Pulsed Laser Excitation, Report No. ARL-TR-9467 (DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD), May 2022.

  28. F.C. de Lucia Jr., L. Giri, R.A. Pesce-Rodriguez, C.-C. Wu, S.W. Dean, T.M. Tovar, R.C. Sausa, E.R. Wainwright, J.L. Gottfried, Commercial aluminum powders, Part I: particle size characterization and slow heating rate thermal analysis. Powder Technol. 399, 117162 (2022)

    Article  Google Scholar 

  29. F.C. de Lucia Jr., S.W. Dean, J.L. Gottfried, Commercial aluminum powders, Part II: energy release rates induced by rapid heating via pulsed laser excitation. Powder Technol. 399, 117161 (2022)

    Article  Google Scholar 

  30. E.R. Wainwright, C.J. Miller, L. Giri, R.A. Pesce-Rodriguez, C.-C. Wu, J.L. Gottfried, Influence of silicon particle morphology on laser-induced plasma properties, Spectrochim. Acta, Part B 199, 106597 (2023)

    Article  CAS  Google Scholar 

  31. J. B. Morris, S. W. Dean, and J. L. Gottfried, Use of a laboratory-scale confined laser ignition chamber as a micro-combustion bomb to estimate impetus at low loading density, Report No. ARL-MR-0972 (US Army Research Laboratory, Aberdeen Proving Ground, MD), Feb 2018.

  32. S. Bastea, L. E. Fried, K. R. Glaesemann, W. M. Howard, I.-F. W. Kuo, P. C. Souers, and P. A. Vitello, CHEETAH 8.0 (Energetic Materials Center, Lawrence Livermore National Laboratory, Livermore, CA, 2015).

Download references

Funding

These projects were supported by the DEVCOM Army Research Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

JG: formal analysis, methodology, investigation, data curation, visualization, supervision, project administration, funding acquisition, and writing-original draft. EW: formal analysis, methodology, investigation, validation, visualization, and writing-review & editing. CD: formal analysis, methodology, investigation, validation, visualization, and writing-review & editing.

Corresponding author

Correspondence to Jennifer L. Gottfried.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gottfried, J.L., Wainwright, E.R. & Dillier, C.A.M. Microscale techniques for investigating the chemistry and energy release of reactive materials. MRS Advances (2024). https://doi.org/10.1557/s43580-024-00823-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43580-024-00823-2

Navigation