Log in

Ultrasonic study of polycrystalline Ti–40Nb alloys at cryogenic temperatures

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Ultrasonic velocity and attenuation measurements of hot-forged β-type Ti–40Nb (%wt) alloy were realized in cooling–heating cycles between 130 and 300 K. The anelastic spectra evidence a complex nature of structural evolution mainly associated with martensitic-like phase transitions. In particular, evident anomalies at around 180 K and 160 K were not previously reported using ultrasonic measurements. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used at room temperature to characterize the sample previously to ultrasonic measurements. Differential scanning calorimetry (DSC) was used to add complementary results at low temperatures. The results detected the coexistence of β and martensite α″ phases at room temperature, with traces of ⍵ phase. The frequency-independent ultrasonic anomalies at around 190 K and 160 K suggest the occurrence of the reversible two-stage martensitic transitions involving β → ⍵ and α″ → ⍵ phases and suppression of the β → α transition in the hot-forged sample.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data can be shared under request to the authors.

References

  1. L.-Y. Chen, Y.-W. Cui, L.-C. Zhang, Metals 10(9), 1139 (2020). https://doi.org/10.3390/met10091139

    Article  CAS  Google Scholar 

  2. N. Kumar, N.C. Arora, B. Datta, Med. J. Armed Forces India 70(4), 371–376 (2014). https://doi.org/10.1016/j.mjafi.2014.04.015

    Article  PubMed  PubMed Central  Google Scholar 

  3. D.A. Basketter, G. Briatico-Vangosa, W. Kaestner, C. Lally, W.J. Bontinck, Contact Dermatitis 28(1), 15–25 (1993). https://doi.org/10.1111/j.1600-0536.1993.tb03318.x

    Article  CAS  PubMed  Google Scholar 

  4. C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, M. Mabuchi, J. Mater. Sci. Mater. Med. 13, 397–401 (2002). https://doi.org/10.1023/A:1014344819558

    Article  CAS  PubMed  Google Scholar 

  5. C.R.M. Afonso, G.T. Aleixo, A.J. Ramirez, R. Caram, Mater. Sci. Eng. C 27(4), 908–913 (2007). https://doi.org/10.1016/j.msec.2006.11.001

    Article  CAS  Google Scholar 

  6. R.F.M. Santos, V.P. Ricci, C.R.M. Afonso, J. Mater. Eng. Perform. 30(5), 3363–3369 (2021). https://doi.org/10.1007/s11665-021-05706-3

    Article  CAS  Google Scholar 

  7. L. Li, W. Mei, H. **ng, X.L. Wang, J. Sun, J. Alloy Compd. 625, 188–192 (2015). https://doi.org/10.1016/j.jallcom.2014.11.082

    Article  CAS  Google Scholar 

  8. P.W.B. Marques, J.M. Chaves, P.S. Silva Jr., O. Florêncio, A. Moreno-Gobbi, L.C.R. Aliaga, W.J. Botta, J. Alloy Compd. 621, 319–323 (2015). https://doi.org/10.1016/j.jallcom.2014.10.001

    Article  CAS  Google Scholar 

  9. T. Yoshida, K. **, K. Wakiya, M. Nakamura, M. Yoshizawa, Y. Muro, Y. Nakanishi, J. Phys. Condens. Matter 35(24), 245602 (2023). https://doi.org/10.1088/1361-648X/acc562

    Article  CAS  Google Scholar 

  10. A. Moreno-Gobbi, P.S. Silva Jr., D.R.N. Correa, A.M. Milá, J.A.M. Chaves, C.R. Grandini, R.F.M. dos Santos, C.R.M. Afonso, J. Mater. Res. Technol. 18, 4990–5004 (2022). https://doi.org/10.1016/j.jmrt.2022.04.096

    Article  CAS  Google Scholar 

  11. E. Sagar, K.V. Kumar, P.V. Reddy, Phase Transit. 94(5), 317–325 (2021). https://doi.org/10.1080/01411594.2021.1937623

    Article  CAS  Google Scholar 

  12. A.C. Larson, R.B. Von Dreele. GSAS: General Software Analysis System Manual, 1994.

  13. B.H. Toby, J. Appl. Crystallogr. 34, 210–213 (2001). https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  14. S. Hanada, N. Masahashi, T.K. Jung, Mater. Sci. Eng. A 588, 403–410 (2013). https://doi.org/10.1016/j.msea.2013.09.053

    Article  CAS  Google Scholar 

  15. H.W. Jeong, Y.S. Yoo, Y.T. Lee, J.K. Park, J. Appl. Phys. 108, 063515 (2010). https://doi.org/10.1063/1.3486212

    Article  CAS  Google Scholar 

  16. J.M. Chaves, O. Florêncio, P.S. Silva Jr., P.W.B. Marques, C.R.M. Afonso, J. Mech. Behav. Biomed. Mater. 46, 184–196 (2015). https://doi.org/10.1016/j.jmbbm.2015.02.030

    Article  CAS  PubMed  Google Scholar 

  17. Y. Yang, P. Castany, M. Cornen, F. Prima, S.J. Li, Y.L. Hao, T. Gloriant, Acta Mater. 88, 25–33 (2015). https://doi.org/10.1016/j.actamat.2015.01.039

    Article  CAS  Google Scholar 

  18. K. Zhang, K. Wang, Y. Fu, W. **ao, J. Han, X. Zhao, Scr. Mater. 214, 114661 (2022). https://doi.org/10.1016/j.scriptamat.2022.114661

    Article  CAS  Google Scholar 

  19. A. Helth, S. Pilz, T. Kirsten, L. Giebeler, J. Freudenberger, M. Calin, J. Eckert, A. Gebert, J. Mech. Behav. Biomed. Mater. 65, 137–150 (2017). https://doi.org/10.1016/j.jmbbm.2016.08.017

    Article  CAS  PubMed  Google Scholar 

  20. D. Gong, H. Wang, Q. Wang, S. Li, K. Lin, Y. Wang, R. Yang, Y. Hao, Scr. Mater. 227, 115275 (2023). https://doi.org/10.1016/j.scriptamat.2022.115275

    Article  CAS  Google Scholar 

  21. M. Bönisch, M. Stoica, M. Calin, Sci. Rep. 10(1), 3045 (2020). https://doi.org/10.1038/s41598-020-60038-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Brazilian funding agencies: FAPESP, CAPES, CNPq, and the Uruguayan institutions: ANII, CSIC-Udelar, and PEDECIBA.

Funding

This work was supported by FAPESP grant #2015/50.280-5, CAPES Finance Code 001;CNPq grant #308.204/2017-4; #304.073/2019-9 from Brazil, and Uruguay funding agency PEDECIBA (Program for the Development of Basic Sciences).

Author information

Authors and Affiliations

Authors

Contributions

AOMG contributed to conceptualization, methodology, investigation, funding acquisition, data curation, writing—original draft, writing—review and editing, visualization, and supervision. DRNC contributed to data curation, writing—original draft, writing—review and editing, and visualization. PSdSJ contributed to conceptualization, methodology, resources, data curation, writing—original draft, writing—review, and editing; RFMdS contributed to investigation, data curation, and writing—original draft. JAMC contributed to investigation, data curation, and writing—original draft. CRMA contributed to conceptualization, methodology, writing—original draft, writing—review and editing, supervision, and funding acquisition. CRG contributed to conceptualization, methodology, writing—original draft, writing—review and editing, supervision, and funding acquisition.

Corresponding author

Correspondence to Ariel Omar Moreno Gobbi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gobbi, A.O.M., Correa, D.R.N., Junior, P.S.S. et al. Ultrasonic study of polycrystalline Ti–40Nb alloys at cryogenic temperatures. MRS Advances 9, 108–112 (2024). https://doi.org/10.1557/s43580-023-00653-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00653-8

Navigation