Log in

Metal–metal phosphide synthesis: Selective phosphidation of Ag–Cu nanocrystals

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The incorporation of phosphorous into metal nanoparticles can be an important way to change the material structure and catalytic properties. Colloidal synthesis, hot injection in particular, is well known for its versatility and can be an alternative approach for Janus nanomaterials’ synthesis. In this work, we show an example of the colloidal synthesis of metal–metal phosphides, by first synthesizing metal–metal nanoparticles followed by partial phosphidation, to convert Ag–Cu to Ag–Cu3P. We show that partial phosphidation of Ag–Cu nanoparticles can be achieved likewise, despite Ag incorporation increasing the stability. SEM, TEM, UV–Vis, and XPS were used to study the differences in structural, morphological' and chemical properties between Ag–Cu and Ag–Cu3P. The materials before and after phosphidation were used as electrocatalysts for hydrogen evolution in 0.1 M NaOH, the onset potential of Ag–Cu3P is 200 mV smaller than Ag–Cu, and the Tafel slope reduced from 218.3 mV/dec for Ag–Cu to 146.8 mV/dec for Ag–Cu3P. In summary, we showed an alternative approach to construct Ag–Cu3P nanoparticles. And this method might be used to construct other Janus metal–metal phosphide (A-BPx, A is the metal with higher redox potential, such as Ag that tends to retain after phosphidation, and B is the metal with lower redox potential, such as Cu and Ni, Fe, Co) nanoparticles and can be useful in energy conversion applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. D. Wang, Y. Li, Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv. Mater. 23(9), 1044–1060 (2011). https://doi.org/10.1002/adma.201003695

    Article  CAS  Google Scholar 

  2. J. Qiu, Q.N. Nguyen, Z. Lyu, Q. Wang, Y. **a, Bimetallic Janus nanocrystals: syntheses and applications. Adv. Mater. 34(1), 2102591 (2022). https://doi.org/10.1002/adma.202102591

    Article  CAS  Google Scholar 

  3. J. Huang, M. Mensi, E. Oveisi, V. Mantella, R. Buonsanti, Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag–Cu nanodimers. J. Am. Chem. Soc. 141(6), 2490–2499 (2019). https://doi.org/10.1021/jacs.8b12381

    Article  CAS  Google Scholar 

  4. C. Wadell, A. Yasuhara, T. Sannomiya, Asymmetric light absorption and radiation of Ag–Cu hybrid nanoparticles. J. Phys. Chem. C 121(48), 27029–27035 (2017). https://doi.org/10.1021/acs.jpcc.7b09926

    Article  CAS  Google Scholar 

  5. S. Biswas, S. Pramanik, S. Mandal, S. Sarkar, S. Chaudhuri, S. De, Facile synthesis of asymmetric patchy Janus Ag/Cu particles and study of their antifungal activity. Front. Mater. Sci. 14(1), 24–32 (2020). https://doi.org/10.1007/s11706-020-0496-6

    Article  Google Scholar 

  6. S. Kaja, A. Nag, Bimetallic Ag–Cu Alloy microflowers as SERS substrates with single-molecule detection limit. Langmuir 37(44), 13027–13037 (2021). https://doi.org/10.1021/acs.langmuir.1c02119

    Article  CAS  Google Scholar 

  7. L. Rahman, A. Shah, S.K. Lunsford, C. Han, M.N. Nadagouda, E. Sahle-Demessie, R. Qureshi, M.S. Khan, H.-B. Kraatz, D.D. Dionysiou, Monitoring of 2-butanone using a Ag–Cu bimetallic alloy nanoscale electrochemical sensor. RSC Adv. 5(55), 44427–44434 (2015). https://doi.org/10.1039/C5RA03633J

    Article  CAS  Google Scholar 

  8. M.S. Seifner, M. Snellman, O.A. Makgae, K. Kumar, D. Jacobsson, M. Ek, K. Deppert, M.E. Messing, K.A. Dick, Interface dynamics in Ag–Cu3P nanoparticle heterostructures. J. Am. Chem. Soc. 144(1), 248–258 (2022). https://doi.org/10.1021/jacs.1c09179

    Article  CAS  Google Scholar 

  9. S. Carenco, Y. Hu, I. Florea, O. Ersen, C. Boissière, N. Mézailles, C. Sanchez, Metal-dependent interplay between crystallization and phosphorus diffusion during the synthesis of metal phosphide nanoparticles. Chem. Mater. 24(21), 4134–4145 (2012). https://doi.org/10.1021/cm3022243

    Article  CAS  Google Scholar 

  10. E.A. Hernández-Pagán, R.W. Lord, J.M. Veglak, R.E. Schaak, Incorporation of metal phosphide domains into colloidal hybrid nanoparticles. Inorg. Chem. 60(7), 4278–4290 (2021). https://doi.org/10.1021/acs.inorgchem.0c03826

    Article  CAS  Google Scholar 

  11. L. De Trizio, A. Figuerola, L. Manna, A. Genovese, C. George, R. Brescia, Z. Saghi, R. Simonutti, M. Van Huis, A. Falqui, Size-tunable, hexagonal plate-like Cu3P and Janus-like Cu–Cu3P nanocrystals. ACS Nano 6(1), 32–41 (2012). https://doi.org/10.1021/nn203702r

    Article  CAS  Google Scholar 

  12. R. Wang, X.-Y. Dong, J. Du, J.-Y. Zhao, S.-Q. Zang, MOF-derived bifunctional Cu3P nanoparticles coated by a N, P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv. Mater. 30(6), 1703711 (2018). https://doi.org/10.1002/adma.201703711

    Article  CAS  Google Scholar 

  13. H. Ahmad, A. Rauf, S. Muhammad, Theoretical investigation of the optoelectronic response of highly correlated Cu3P photocatalyst. RSC Adv. 12(32), 20721–20726 (2022). https://doi.org/10.1039/D2RA02472A

    Article  CAS  Google Scholar 

  14. A. Crovetto, T. Unold, A. Zakutayev, Is Cu3–XP a semiconductor, a metal, or a semimetal? Chem. Mater. 35(3), 1259–1272 (2023). https://doi.org/10.1021/acs.chemmater.2c03283

    Article  CAS  Google Scholar 

  15. P. Losch, W. Huang, E.D. Goodman, C.J. Wrasman, A. Holm, A.R. Riscoe, J.A. Schwalbe, M. Cargnello, Colloidal nanocrystals for heterogeneous catalysis. Nano Today 24, 15–47 (2019). https://doi.org/10.1016/j.nantod.2018.12.002

    Article  CAS  Google Scholar 

  16. J.V.I. Timonen, E.T. Seppälä, O. Ikkala, R.H.A. Ras, From hot-injection synthesis to heating-up synthesis of cobalt nanoparticles: observation of kinetically controllable nucleation. Angew. Chem. Int. Ed. 50(9), 2080–2084 (2011). https://doi.org/10.1002/anie.201005600

    Article  CAS  Google Scholar 

  17. A.E. Henkes, R.E. Schaak, Trioctylphosphine: a general phosphorus source for the low-temperature conversion of metals into metal phosphides. Chem. Mater. 19(17), 4234–4242 (2007). https://doi.org/10.1021/cm071021w

    Article  CAS  Google Scholar 

  18. X. Zhao, Q. Di, M. Li, Q. Yang, Z. Zhang, X. Guo, X. Fan, K. Deng, W. Chen, J. Zhang, J. Fang, Z. Quan, Generalized synthesis of uniform metal nanoparticles assisted with tungsten hexacarbonyl. Chem. Mater. 31(12), 4325–4329 (2019). https://doi.org/10.1021/acs.chemmater.9b00219

    Article  CAS  Google Scholar 

  19. C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler, J. van de Streek, Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 39(3), 453–457 (2006). https://doi.org/10.1107/S002188980600731X

    Article  CAS  Google Scholar 

  20. W.T. Osowiecki, X. Ye, P. Satish, K.C. Bustillo, E.L. Clark, A.P. Alivisatos, Tailoring morphology of Cu–Ag nanocrescents and core-shell nanocrystals guided by a thermodynamic model. J. Am. Chem. Soc. 140(27), 8569–8577 (2018). https://doi.org/10.1021/jacs.8b04558

    Article  CAS  Google Scholar 

  21. S.I. Bogatyrenko, A.P. Kryshtal, A. Kruk, Effect of size on the formation of solid solutions in Ag–Cu nanoparticles. J. Phys. Chem. C 127(5), 2569–2580 (2023). https://doi.org/10.1021/acs.jpcc.2c07132

    Article  CAS  Google Scholar 

  22. T. Sun, Y. Wang, W. Yu, Y. Wang, Z. Dai, Z. Liu, B.N. Shivananju, Y. Zhang, K. Fu, B. Shabbir, W. Ma, S. Li, Q. Bao, Flexible broadband graphene photodetectors enhanced by plasmonic Cu3−xP colloidal nanocrystals. Small 13(42), 1701881 (2017). https://doi.org/10.1002/smll.201701881

    Article  CAS  Google Scholar 

  23. M. Hlaing, B. Gebear-Eigzabher, A. Roa, A. Marcano, D. Radu, C.-Y. Lai, Absorption and scattering cross-section extinction values of silver nanoparticles. Opt. Mater. 58, 439–444 (2016). https://doi.org/10.1016/j.optmat.2016.06.013

    Article  CAS  Google Scholar 

  24. J. Lin, C. Zeng, X. Lin, C. Xu, C.-Y. Su, CNT-assembled octahedron carbon-encapsulated Cu3P/Cu heterostructure by in situ MOF-derived engineering for superior lithium storage: investigations by experimental implementation and first-principles calculation. Adv. Sci. 7(14), 2000736 (2020). https://doi.org/10.1002/advs.202000736

    Article  CAS  Google Scholar 

  25. H. Du, R.-M. Kong, X. Guo, F. Qu, J. Li, Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. Nanoscale 10(46), 21617–21624 (2018). https://doi.org/10.1039/C8NR07891B

    Article  CAS  Google Scholar 

  26. J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152(3), J23 (2005). https://doi.org/10.1149/1.1856988

    Article  CAS  Google Scholar 

  27. W. Sheng, M. Myint, J.G. Chen, Y. Yan, Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 6(5), 1509–1512 (2013). https://doi.org/10.1039/C3EE00045A

    Article  CAS  Google Scholar 

  28. J.R. Lombardi, R.L. Birke, A unified approach to surface-enhanced raman spectroscopy. J. Phys. Chem. C 112(14), 5605–5617 (2008). https://doi.org/10.1021/jp800167v

    Article  CAS  Google Scholar 

  29. R.F. Zhang, X.F. Kong, H.T. Wang, S.H. Zhang, D. Legut, S.H. Sheng, S. Srinivasan, K. Rajan, T.C. Germann, An informatics guided classification of miscible and immiscible binary alloy systems. Sci. Rep. 7(1), 9577 (2017). https://doi.org/10.1038/s41598-017-09704-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

AL wishes to acknowledge financial support from the Center for Functional Materials (CFM) and the Center for Energy, Environment and Sustainability at Wake Forest University. Some of the characterizations described in this manuscript was performed in part at the Joint School of Nanoscience and Nanoengineering (JSNN), a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the National Science Foundation (Grant ECCS-2025462). The authors would like to thank Dr. Gayani Pathiraja for performing the TEM and STEM analysis and help from Mr. Kyle Williamson, Dr. Shobha Mantripragada from JSNN, and Dr. Chaochao Dun from Molecular Foundry for the XPS data measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdessadek Lachgar.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 215 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Lachgar, A. Metal–metal phosphide synthesis: Selective phosphidation of Ag–Cu nanocrystals. MRS Advances 8, 1010–1016 (2023). https://doi.org/10.1557/s43580-023-00604-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00604-3

Navigation