Log in

An economic evaluation of carbon capture applied to the Brazilian steel industry

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Brazil assumed new commitments at COP26: mitigate 50% of its greenhouse gas emissions until 2030 and the neutralization of carbon emissions until 2050. The steel industry is one of the sectors that most emit CO2 into the atmosphere. On average, for every ton of steel produced, 1.8 tons of CO2 are released, corresponding to 7% of the total global anthropogenic emissions. Brazil being one of the biggest steel producers in the world, responsible for 36.2 million tons in 2021, encouraging the development of an economic evaluation of carbon capture applied to the Brazilian Steel industry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data generated or analysed during this study are included in this published article.

References

  1. Instituto Aço Brasil. (2022). A siderurgia em números 2022. https://acobrasil.org.br/site/wp-content/uploads/2022/05/AcoBrasil_Mini_anuario_2022.pdf. Accessed 05 May 2022

  2. Worldsteel Association (2021), Sustainability Indicators 2021 report, https://worldsteel.org/wp-content/uploads/Sustainability-Indicators-2021-Report.pdf. Accessed 12 May 2022

  3. DA UNIÃO, Diário Oficial et al. Diário Oficial da União, DECRETO Nº 11.075, DE 19 DE MAIO DE 2022, Edição n. 94-A, Seção 1 – Extra-A, p. 1.

  4. Centro de Gestão e Estudos Estratégicos, 2010. Siderurgia no Brasil 2010–2025; subsídios para tomada de decisão.

  5. SEEG (2021). Análise das emissões brasileiras de Gases de Efeito Estufa e suas implicações para as metas climáticas do Brasil 1970 – 2020. https://seeg-br.s3.amazonaws.com/Documentos%20Analiticos/SEEG_9/OC_03_relatorio_2021_FINAL.pdf. Accessed 11 May 2022

  6. Instituto Aço Brasil. (2020). Folder Aço Brasil Sustentabilidade 2020. https://www.acobrasil.org.br/relatoriodesustentabilidade/assets/pdf/PDF-2020-Relatorio-Aco-Brasil-COMPLETO.pdf. Accessed 11 May 2022.

  7. J.L. Miranda et al., Antropoceno e o CO2: Processos de Captura e Conversão. Revista Virtual de Química 6, 1915–1946 (2018)

    Article  Google Scholar 

  8. FERNANDES, Mauro Vivaldino. Efeito do tipo de carvão injetado nas ventaneiras do alto-forno no consumo de combustíveis (Fuel-Rate). 2007.

  9. B.P. Spigarelli, S.K. Kawatra, Opportunities and challenges in carbon dioxide capture. J. CO2 Utilization 1, 69–87 (2013)

    Article  CAS  Google Scholar 

  10. J.I. Huertas et al., CO2 absorbing capacity of MEA. J. Chem. 2015, 1–7 (2015)

    Article  Google Scholar 

  11. W.D. Teixeira et al., Avaliação do Processo de Degradação da MEA no sistema de absorção de CO2 em gás de Queima. Seminário Estudantil de Produção Acadêmica 10, 1 (2007)

    Google Scholar 

  12. S. Yun, M.-G. Jang, J.-K. Kim, Techno-economic assessment and comparison of absorption and membrane CO2 capture processes for iron and steel industry. Energy 229, 120778 (2021)

    Article  CAS  Google Scholar 

  13. Á.A. Ramírez-Santos et al., Optimization of multistage membrane gas separation processes. Example of application to CO2 capture from blast furnace gas. J. Membr. Sci 566, 346–366 (2018)

    Article  Google Scholar 

  14. A.M. Arias et al., Optimization of multi-stage membrane systems for CO2 capture from flue gas. Int. J. Greenhouse Gas Control 53, 371–390 (2016)

    Article  CAS  Google Scholar 

  15. Á.A. Ramírez-Santos, C. Castel, E. Favre, Utilization of blast furnace flue gas: opportunities and challenges for polymeric membrane gas separation processes. J. Membr. Sci. 526, 191–204 (2017)

    Article  Google Scholar 

  16. Consequences and alternatives, LUIS, Patricia. Use of monoethanolamine (MEA) for CO2 capture in a global scenario. Desalination 380, 93–99 (2016)

    Article  Google Scholar 

  17. R.W. Baker et al., CO2 capture from cement plants and steel mills using membranes. Ind. Eng. Chem. Res. 57(47), 15963–15970 (2018)

    Article  CAS  Google Scholar 

  18. Technical concept analysis, ARASTO, Antti et al. Post-combustion capture of CO2 at an integrated steel mill–Part I. Int. J. Greenhouse Gas Control 16, 271–277 (2013)

    Article  Google Scholar 

  19. Li. Zhao et al., Multi-stage gas separation membrane processes used in post-combustion capture: energetic and economic analyses. J. Membr. Sci. 359(1–2), 160–172 (2010)

    Article  CAS  Google Scholar 

  20. R. Smith, Chemical process: design and integration (Wiley, New York, 2005)

    Google Scholar 

  21. Peters, M. S., Timmerhaus, K. D., West, R. E. Cost estimation. Plant Design and Economics for Chemical Engineers, 1991.

  22. Banco Central do Brasil. Cotação de moedas. https://www.bcb.gov.br/estabilidadefinanceira/cotacoesmoedas. Accessed 24 April 2022

  23. DATAGRO, RenovaBio. CBIO - Crédito De Descarbonização. https://cbio.datagro.com/cbio/. Accessed 09 May 2022

  24. Carbon Credits, Live Carbon Prices Today. Disponível em: < https://carboncredits.com/carbon-prices-today/. Accessed 30 May 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irla Deise Marciano de Sá Silva.

Ethics declarations

Conflict of interest

The authors declare no competing interests. All data generated or analysed during this study are included in this published article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sá Silva, I.D.M., de Santana, D.M., Pontes, K.V. et al. An economic evaluation of carbon capture applied to the Brazilian steel industry. MRS Advances 8, 108–112 (2023). https://doi.org/10.1557/s43580-023-00545-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00545-x

Navigation