Log in

Fluorescence modulation of nanodiamond NV centers for neurochemical detection

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Nanodiamond (ND) with nitrogen vacancy (NV) color centers has emerged as an important material for quantum sensing and imaging. Fluorescent, carboxylated ND (140 nm) is investigated for the detection of dopamine (DA), caffeine (CA), and ascorbic acid (AA). Over a 200 nM range, DA and CA quenched the ND fluorescence by 7.1 and 9.8%, respectively. For AA, fluorescence was quenched (2.9%) at nM concentrations and enhanced at μM concentrations. The quenching fit well to Langmuir adsorption isotherms. For DA-CA mixtures, the CA at nM concentrations did not affect DA quenching but interfered when at μM concentrations. The DA at nM or μM concentrations lessened CA quenching. For DA-AA mixtures with DA at mM concentrations, AA quenched fluorescence throughout the nM and μM range, with increased quenching in the nM range. These studies support ND fluorescence modulation as a possible sensor modality for bioanalyte detection.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Perry, Q. Li, R.T. Kennedy, Anal. Chim. Acta 653(1), 1 (2009)

    Article  CAS  Google Scholar 

  2. A. Hermans, R.B. Keithley, J.M. Kita, L.A. Sombers, R.M. Wightman, Anal Chem. 80, 4040 (2008)

    Article  CAS  Google Scholar 

  3. Q. Cao, P. Puthongkham, B.J. Venton, Anal. Methods 11, 247 (2019)

    Article  CAS  Google Scholar 

  4. H.B. Martin, A. Argoitia, J.C. Angus, U. Landau, J. Electrochem. Soc. 146(8), 2959 (1999)

    Article  CAS  Google Scholar 

  5. K.E. Bennet, J.R. Tomshine, H. KiMin, F. Manciu, M.P. Marsh, S.B. Paek, M.L. Settell, E.N. Nicolai, C.D. Blaha, A.Z. Kouzani, S. Chang, K.H. Lee, Front. Human Neurosci. 10, 102 (2016)

    Article  Google Scholar 

  6. M. Novotny, V.Q. Mocko, E.A. Wehrwein, D.L. Kreulen, G.M. Swain, J. Neurosci, Meth. 163, 52 (2007)

    CAS  Google Scholar 

  7. A. Suzuki, T.A. Ivandini, K. Yoshimi, A. Fujishima, G. Oyama, T. Nakazato, N. Hattori, S. Kitazawa, Y. Einaga, Anal. Chem. 79, 8608 (2007)

    Article  CAS  Google Scholar 

  8. S. **e, G. Shafer, C.G. Wilson, H.B. Martin, Diam. Relat. Mater. 15, 225 (2006)

    Article  CAS  Google Scholar 

  9. A.E. Hess, D.M. Sabens, H.B. Martin, C.A. Zorman, J. Microelectromech. Syst. 20(4), 867 (2011)

    Article  CAS  Google Scholar 

  10. J.M. Halpern, H.B. Martin, Diamond Relat. Mater. 42, 33 (2014)

    Article  CAS  Google Scholar 

  11. P.U. Arumugam, H. Zeng, S. Siddiqui, D.P. Covey, J.A. Carlisle, P.A. Garris, Appl. Phys. Lett. 102, 253107 (2013)

    Article  Google Scholar 

  12. C. Stavis, T.L. Clare, J.E. Butler, A.D. Radadia, R. Carr, H. Zeng et al., PNAS 108(3), 983 (2011)

    Article  CAS  Google Scholar 

  13. S. Szunerits and R. Boukherroub (2013) Diamond-Based Materials for Biomedical Applications, ed. by R. Narayan Woodhead Publishing DOI: https://doi.org/10.1533/9780857093516.1.25

  14. S. Karaveli, O. Gaathona, A. Wolcott, R. Sakakibara, O.A. Shemesh, D.S. Peterkag et al., PNAS 113(15), 3938 (2016)

    Article  CAS  Google Scholar 

  15. V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, Nat. Nanotechnol. 7(1), 11 (2012)

    Article  CAS  Google Scholar 

  16. H.C. Chang (2010) Nanodiamonds applications in biology and nanoscale medicine, ed D. Ho Springer, New York

  17. O.A. Shenderova and S.A.C. Hens (2010) In Nanodiamonds: Applications in biology and nanoscale medicine, ed. by D. Ho Springer, New York, p. 79.

  18. R. Kaur, I. Badea, Int. J. Nanomed. 8, 203 (2013)

    Article  Google Scholar 

  19. P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr et al., Nano Lett. 13(6), 2738 (2013)

    Article  CAS  Google Scholar 

  20. D.M. Toyli, L.C.F.D. Casas, D.J. Christle, V.V. Dobrovitski, D.D. Awschalom, PNAS 110, 8417 (2013)

    Article  CAS  Google Scholar 

  21. J. Teissier, A. Barfuss, P. Appel, E. Neu, P. Maletinsky, Phys Rev. Lett. 113, 020503 (2014)

    Article  CAS  Google Scholar 

  22. M.W. Doherty, V.V. Struzhkin, D.A. Simpson, L.P. McGuinness, Y. Meng, A. Stacey et al., Phys. Rev. Lett. 112(4), 047601 (2014)

    Article  Google Scholar 

  23. M. Shellaiah, T. Simon, N. Thirumalaivasan, K.W. Sun, F. Ko, S. Wu, Microchim. Acta 186, 788 (2019)

    Article  CAS  Google Scholar 

  24. K. Ge, X. He, Z. Xu, R. Chu, Chem. Select 4, 12573 (2019). https://doi.org/10.1002/slct.201903609

    Article  CAS  Google Scholar 

  25. P. Karmakar, S. Manna, K. Maiti, S.S. Ali, U.N. Guria, R. Sarkar et al., Supramol. Chem. 31, 28 (2019). https://doi.org/10.1080/10610278.2018.1530352

    Article  CAS  Google Scholar 

  26. W. Xu, T. Kim, D. Zhai, J.C. Er, L. Zhang, A.A. Kale, B.K. Agrawalla, Y. Cho, Y. Chang, Sci. Reports 3, 2255 (2013)

    Google Scholar 

  27. J. Smith, K. Loxley, P. Sheridan, T.M. Hamilton, J. Chem. Educ. 93, 1776 (2016)

    Article  CAS  Google Scholar 

  28. Y. Matsuoka, M. Yamato, K. Yamada, J. Clin. Biochem. Nutr. 58, 1 (2016)

    Article  Google Scholar 

  29. H.W. Park, S.M. Alam, S.H. Lee, M.M. Karim, S.M. Wabaidur, M. Kang, J.H. Choi, Luminescence 24, 367 (2009)

    CAS  Google Scholar 

  30. F. Chen, Z.-Y. Hu, R.B. Parker, S.C. Laizure, Biomed. Chromatogr. 31, e3900 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

M. Rashwan acknowledges the guidance of Prof. Hassan Azab in fluorescence techniques. Prof. Christopher Wirth and Aiden Rashidi helped with zeta potential measurements. This work was supported in part by a grant from the National Institutes of Health: EB021911 (to H.B.) The funding support of the Egyptian and Cultural Bureau is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi B. Martin.

Ethics declarations

Conflict of interest

The authors do not have any competing interests to declare that are directly or indirectly related to the work that is being submitted for publication.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashwan, M.S., Anwar, Z.M., Baskaran, H. et al. Fluorescence modulation of nanodiamond NV centers for neurochemical detection. MRS Advances 7, 766–771 (2022). https://doi.org/10.1557/s43580-022-00322-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00322-2

Navigation