Log in

Influence of composition of β-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Scaffolds with Schwarz D geometry based on triply periodic minimal surfaces (TPMS) were obtained by 3D printing with a biodegradable and bioactive paste (66.5% calcium phosphate with and without magnesium, 28.5% bioglass borate (BGBS), 3% attapulgite, and 2% water by weight). The osteogenic differentiation of mesenchymal stem cells (hMSC) was performed from human adipose tissue (ADSCs) in the presence of the scaffolds, which were characterized by degradability (International Organization for Standar ISO 10993—Part: 14), in vitro bioactivity by immersion tests in SBF arranged by Kokubo at different time intervals, cell proliferation, and osteogenic differentiation by alkaline phosphatase activity. Calcium phosphate is associated with β-tricalcium phosphate (β-TCP), in addition to amorphous Bioglass Borate. Scaffolds with calcium and magnesium phosphate (β-TCP/Mg) showed better degradability and bioactivity than scaffolds without Mg. Both scaffolds showed porosity and pore interconnectivity. Mesenchymal stem cells showed good adhesion and cell proliferation in contact with the scaffolds. Scaffolds doped with Mg were better promoters of cellular proliferation, additionally they did not show a cytotoxic effect. Differentiation of the osteogenic environment was verified by alkaline phosphatase activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Pärssinen, H. Hammarén, R. Rahikainen, V. Sencadas, C. Ribeiro, S. Vanhatupa et al., Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride). J. Biomed. Mater. Res. A. 103(3), 919–928 (2015)

    Article  Google Scholar 

  2. M. Mebarki, L. Coquelin, P. Layrolle, S. Battaglia, M. Tossou, P. Hernigou et al., Enhanced human bone marrow mesenchymal stromal cell adhesion on scaffolds promotes cell survival and bone formation. Acta Biomater. 59, 94–107 (2017)

    Article  CAS  Google Scholar 

  3. G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia, F. Han et al., 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 3(3), 278–314 (2018). https://doi.org/10.1016/j.bioactmat.2017.10.001

    Article  Google Scholar 

  4. R. Bou Assaf, M. Fayyad-Kazan, F. Al-Nemer, R. Makki, H. Fayyad-Kazan, B. Badran et al., Evaluation of the osteogenic potential of different scaffolds embedded with human stem cells originated from Schneiderian membrane: an in vitro study. Biomed. Res. Int. 2019, 2868673 (2019)

    Article  Google Scholar 

  5. C.-C. Hung, A. Chaya, K. Liu, K. Verdelis, C. Sfeir, The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta Biomater. 98, 246–255 (2019)

    Article  CAS  Google Scholar 

  6. M. Fantini, M. Curto, F. De Crescenzio, TPMS for interactive modelling of trabecular scaffolds for bone tissue engineering, in Advances on Mechanics, Design Engineering and Manufacturing (Springer, Cham, 2017), pp. 425–435

  7. J.A. Ramírez, V. Ospina, A.A. Rozo, M.I. Viana, S. Ocampo, S. Restrepo, N.A. Vásquez, C. Paucar, C. García, Influence of geometry on cell proliferation of PLA and alumina scaffolds constructed by additive manufacturing. J. Mater. Res. 34(22), 3757–3765 (2019)

    Article  Google Scholar 

  8. S.C. Han, J.M. Choi, G. Liu, K. Kang, A microscopic shell structure with Schwarz’s D-surface. Sci. Rep. 7(1), 13405 (2017). https://doi.org/10.1038/s41598-017-13618-3

    Article  CAS  Google Scholar 

  9. J.C. Ra, I.S. Shin, S.H. Kim, S.K. Kang, B.C. Kang, H.Y. Lee et al., Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev. 20(8), 1297–1308 (2011). https://doi.org/10.1089/scd.2010.0466

    Article  CAS  Google Scholar 

  10. A.W. Robert, A.B.B. Angulski, L. Spangenberg, P. Shigunov, I.T. Pereira, P.S.L. Bettes et al., Gene expression analysis of human adipose tissue-derived stem cells during the initial steps of in vitro osteogenesis. Sci. Rep. 8(1), 4739 (2018). https://doi.org/10.1038/s41598-018-22991-6

    Article  CAS  Google Scholar 

  11. L.-Y. Sun, C.-Y. Pang, D.-K. Li, C.-H. Liao, W.-C. Huang, C.-C. Wu et al., Antioxidants cause rapid expansion of human adipose-derived mesenchymal stem cells via CDK and CDK inhibitor regulation. J. Biomed. Sci. 20(1), 53 (2013). https://doi.org/10.1186/1423-0127-20-53

    Article  CAS  Google Scholar 

  12. J.B. Park, The effects of dexamethasone, ascorbic acid, and β-glycerophosphate on osteoblastic differentiation by regulating estrogen receptor and osteopontin expression. J. Surg. Res. 173(1), 99–104 (2012). https://doi.org/10.1016/j.jss.2010.09.010

    Article  CAS  Google Scholar 

  13. C. Wang, X. Cao, Y. Zhang, A novel bioactive osteogenesis scaffold delivers ascorbic acid, beta-glycerophosphate, and dexamethasone in vivo to promote bone regeneration. Oncotarget. 8(19), 31612–31625 (2017)

    Article  Google Scholar 

  14. R.T. Franceschi, B.S. Iyer, Y. Cui, Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J. Bone Miner. Res. 9(6), 843–854 (1994)

    Article  CAS  Google Scholar 

  15. A. Shioi, Y. Nishizawa, S. Jono, H. Koyama, M. Hosoi, H. Morii, Beta-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 15(11), 2003–2009 (1995)

    Article  CAS  Google Scholar 

  16. C.H. Chung, E.E. Golub, E. Forbes, T. Tokuoka, I.M. Shapiro, Mechanism of action of beta-glycerophosphate on bone cell mineralization. Calcif. Tissue Int. 51(4), 305–311 (1992)

    Article  CAS  Google Scholar 

  17. X. Ma, X. Zhang, Y. Jia, S. Zu, S. Han, D. **ao et al., Dexamethasone induces osteogenesis via regulation of hedgehog signalling molecules in rat mesenchymal stem cells. Int. Orthop. 37(7), 1399–1404 (2013)

    Article  Google Scholar 

  18. C.M. Park, M. **an, Use of phosphorodithioate-based compounds as hydrogen sulfide donors. Methods Enzymol. 554, 127–142 (2015). https://doi.org/10.1016/bs.mie.2014.11.032

    Article  CAS  Google Scholar 

  19. N.W. Tietz, A.D. Rinker, L.M. Shaw, IFCC methods for the measurement of catalytic concentration of enzymes, Part 5. IFCC method for alkaline phosphatase (orthophosphoric-monoester phosphohydrolase, alkaline optimum, EC 3.1.3.1). J. Clin. Chem. Clin. Biochem. 21(11), 731–748 (1983)

    CAS  Google Scholar 

  20. G.N. Bowers Jr., R.B. McComb, Measurement of total alkaline phosphatase activity in human serum. Clin. Chem. 21(13), 1988–1995 (1975)

    Article  CAS  Google Scholar 

  21. H. Bergmeyer, M. Horder, R. Rej, Approved recommendation (1985) on IFCC methods for the measurement of catalytic concentration of enzymes. Part 2. IFCC method for aspartate aminotransferase (L-aspartate: 2-oxoglutarate aminotransferase, EC 2.6.1.1). J. Clin. Chem. Clin. Biochem. 24, 497–508 (1986)

    CAS  Google Scholar 

  22. M. Goldberg, V. Smirnov, P. Protsenko, O. Antonova, S.V. Smirnov, A.A. Fomina et al., Influence of aluminum substitutions on phase composition and morphology of β-tricalcium phosphate nanopowders. Ceram. Int. 43(16), 13881–13884 (2017)

    Article  CAS  Google Scholar 

  23. D. Zhou, C. Qi, Y.-X. Chen, Y.-J. Zhu, T.-W. Sun, F. Chen et al., Comparative study of porous hydroxyapatite/chitosan and whitlockite/chitosan scaffolds for bone regeneration in calvarial defects. Int. J. Nanomed. 12, 2673–2687 (2017). https://doi.org/10.2147/IJN.S131251

    Article  CAS  Google Scholar 

  24. M. Seidenstuecker, Y. Mrestani, R. Neubert, A. Bernstein, H. Mayr, Release kinetics and antibacterial efficacy of microporous—TCP coatings. J. Nanomater. 1–8, 2013 (2013)

    Google Scholar 

  25. M. Huang, T. Li, T. Pan, N. Zhao, Y. Yao, Z. Zhai et al., Controlling the strontium-do** in calcium phosphate microcapsules through yeast-regulated biomimetic mineralization. Regen. Biomater. 3(5), 269–276 (2016)

    Article  CAS  Google Scholar 

  26. Biological evaluation of medical devices—part 14: identification and quantification of degradation products from ceramics 10993-14. International Organization for Standardization. ISO 2001

  27. K.P. Schlingmann, M. Konrad, Magnesium homeostasis, in Principles of Bone Biology, 4th edn (Academic Press, New York, 2020), pp. 509–525. ISBN 9780128148419

  28. A. Elghazel, R. Taktak, J. Bouaziz, S. Charfi, H. Keskes, TCP-fluorapatite composite scaffolds: mechanical characterization and in vitro/in vivo testing, in Scaffolds in Tissue Engineering Materials, Technologies and Clinical Applications (IntechOpen, London, 2017), p. 129

  29. A. Priya, S. Nath, K. Biswas, B. Basu, In vitro dissolution of calcium phosphate-mullite composite in simulated body fluid. J. Mater. Sci. Mater. Med. 21, 1817–1828 (2010)

    Article  CAS  Google Scholar 

  30. J. Ma, N. Zhao, D. Zhu, Biphasic responses of human vascular smooth muscle cells to magnesium ion. J. Biomed. Mater. Res. A 104(2), 347–356 (2016). https://doi.org/10.1002/jbm.a.35570

    Article  CAS  Google Scholar 

  31. H. Zreiqat, C.R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, M. Shakibaei, Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res. 62(2), 175–184 (2002). https://doi.org/10.1002/jbm.10270

    Article  CAS  Google Scholar 

  32. X. Nie, X. Sun, C. Wang, J. Yang, Effect of magnesium ions/Type I collagen promote the biological behavior of osteoblasts and its mechanism. Regen. Biomater. 7(1), 53–61 (2020). https://doi.org/10.1093/rb/rbz033

    Article  CAS  Google Scholar 

  33. B. Nelson Sathy, A. Natarajan, D. Menon, V. Bhaskaran, U. Mony, S. Nair, Gelatin nanoparticles loaded poly([Formula: see text]-caprolactone) nanofibrous semi-synthetic scaffolds for bone tissue engineering. Biomed. Mater. 7, 65001 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was funded by the Administrative Department of Science, Technology, and Innovation – COLCIENCIAS – doctoral Grant 647-2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Paucar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaramillo, N., Moreno, A., Sánchez, R. et al. Influence of composition of β-TCP and borate bioglass scaffolds on cell proliferation of adipose tissue-derived mesenchymal stem cells: osteogenic differentiation. MRS Advances 6, 434–443 (2021). https://doi.org/10.1557/s43580-021-00036-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00036-x

Navigation