Log in

A mechano-diffusion characterization platform for probing strain-programmable nanoparticle diffusion in hydrogels

  • Early Career Materials Researcher Methods Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Nanoparticle diffusion is a fundamental process that ubiquitously exists in life science and engineering technology. Recent studies demonstrate the potential of harnessing mechanical deformation to program nanoparticle diffusion in hydrogels, offering an expanded spectrum of nanoparticle diffusivities with precise and on-demand control. Here, we develop a mechano-diffusion characterization platform (MDCP) that integrates a mechanical system to apply controlled tension and torsion loads to deformable mediums, and an imaging system to capture spatiotemporal diffusion profiles of nanoparticles. Employing the MDCP, we study the impact of mechanical deformation on nanoparticle diffusion in hydrogels subjected to controlled stress states and loading rates.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

Data will be made available on reasonable request.

References

  1. S. Patel et al., Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 11, 983 (2020). https://doi.org/10.1038/s41467-020-14527-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M. Liu et al., Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging. Nat. Commun. 8, 15646 (2017). https://doi.org/10.1038/ncomms15646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M.I. Pino-Argumedo et al., Elastic mucus strands impair mucociliary clearance in cystic fibrosis pigs. Proc. Natl. Acad. Sci. U.S.A. 119, e2121731119 (2022). https://doi.org/10.1073/pnas.2121731119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. H. Gu et al., Artificial microtubules for rapid and collective transport of magnetic microcargoes. Nat. Mach. Intell. 4, 678–684 (2022). https://doi.org/10.1038/s42256-022-00510-7

    Article  Google Scholar 

  5. A. Mateu-Regue et al., Single mRNP analysis reveals that small cytoplasmic mRNP granules represent mRNA singletons. Cell Rep. 29, 736–748 (2019). https://doi.org/10.1016/j.celrep.2019.09.018

    Article  CAS  PubMed  Google Scholar 

  6. S. Hu et al., A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery. Nat. Commun. 12, 1689 (2021). https://doi.org/10.1038/s41467-021-21989-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S. Basu et al., Numerical evaluation of spray position for improved nasal drug delivery. Sci. Rep. 10, 10568 (2020). https://doi.org/10.1038/s41598-020-66716-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. H.S. Muddana, S. Sengupta, T.E. Mallouk, A. Sen, P.J. Butler, Substrate catalysis enhances single-enzyme diffusion. J. Am. Chem. Soc. 132, 2110–2111 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Y. Qin et al., Hollow mesoporous metal–organic frameworks with enhanced diffusion for highly efficient catalysis. ACS Catal. 10, 5973–5978 (2020)

    Article  CAS  Google Scholar 

  10. S. Raju et al., Improved methodology to determine the fate and transport of microplastics in a secondary wastewater treatment plant. Water Res. 173, 115549 (2020). https://doi.org/10.1016/j.watres.2020.115549

    Article  CAS  PubMed  Google Scholar 

  11. S. Freeman et al., Between source and sea: the role of wastewater treatment in reducing marine microplastics. J. Environ. Manage. 266, 110642 (2020). https://doi.org/10.1016/j.jenvman.2020.110642

    Article  CAS  PubMed  Google Scholar 

  12. H. Zhang et al., In situ formation of gold nanoparticles decorated Ti3C2 MXenes nanoprobe for highly sensitive electrogenerated chemiluminescence detection of exosomes and their surface proteins. Anal. Chem. 92, 5546–5553 (2020)

    Article  CAS  PubMed  Google Scholar 

  13. S. Lin et al., Natural perspiration sampling and in situ electrochemical analysis with hydrogel micropatches for user-identifiable and wireless chemo/biosensing. ACS Sens. 5, 93–102 (2020). https://doi.org/10.1021/acssensors.9b01727

    Article  CAS  PubMed  Google Scholar 

  14. C.C. Miller, The Stokes–Einstein law for diffusion in solution. Proc. R. Soc. London Ser. A, Containing Papers Math. Phys. Charact. 106, 724–749 (1924)

    CAS  Google Scholar 

  15. Q. Liu, S. Huang, Z. Suo, Brownian motion of molecular probes in supercooled liquids. Phys. Rev. Lett. 114, 224301 (2015). https://doi.org/10.1103/PhysRevLett.114.224301

    Article  CAS  PubMed  Google Scholar 

  16. J. Liu, S. Lin, Strain-engineered particle diffusion in uniaxially deformed polymer networks. J. Mechan. Phys. Solids (2024). https://doi.org/10.1016/j.jmps.2024.105732

    Article  Google Scholar 

  17. P.J. Moncure, Z.C. Simon, J.E. Millstone, J.E. Laaser, Relationship between gel mesh and particle size in determining nanoparticle diffusion in hydrogel nanocomposites. J. Phys. Chem. B 126, 4132–4142 (2022). https://doi.org/10.1021/acs.jpcb.2c00771

    Article  CAS  PubMed  Google Scholar 

  18. Y. Gu, M.E. Distler, H.F. Cheng, C. Huang, C.A. Mirkin, A general DNA-gated hydrogel strategy for selective transport of chemical and biological cargos. J. Am. Chem. Soc. 143, 17200–17208 (2021)

    Article  CAS  PubMed  Google Scholar 

  19. J. Floury, M.-N. Madec, F. Waharte, S. Jeanson, S. Lortal, First assessment of diffusion coefficients in model cheese by fluorescence recovery after photobleaching (FRAP). Food Chem. 133, 551–556 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. Y.G. Anissimov, X. Zhao, M.S. Roberts, A.V. Zvyagin, Fluorescence recovery after photo-bleaching as a method to determine local diffusion coefficient in the stratum corneum. Int. J. Pharm. 435, 93–97 (2012)

    Article  CAS  PubMed  Google Scholar 

  21. H.H. Park, B. Wang, S. Moon, T. Jepson, K. Xu, Machine-learning-powered extraction of molecular diffusivity from single-molecule images for super-resolution map**. Commun. Biol. 6, 336 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A.B. Andrews, R.E. Guerra, O.C. Mullins, P.N. Sen, Diffusivity of asphaltene molecules by fluorescence correlation spectroscopy. J. Phys. Chem. A 110, 8093–8097 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. R. Pecora, Dynamic light scattering measurement of nanometer particles in liquids. J. Nanopart. Res. 2, 123–131 (2000)

    Article  CAS  Google Scholar 

  24. G. Costantini, S. Capuani, F.A. Farrelly, A. Taloni, A new perspective of molecular diffusion by nuclear magnetic resonance. Sci. Rep. 13, 1703 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. A.J. Grodzinsky, Fields, forces, and flows in biological systems (CRC Press, Boca Raton, 2011)

    Book  Google Scholar 

  26. H. Yuk, T. Zhang, S. Lin, G.A. Parada, X. Zhao, Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15, 190–196 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. A. Gole, C.J. Murphy, Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chem. Mater. 16, 3633–3640 (2004)

    Article  CAS  Google Scholar 

  28. Kafadar, Ö. & Sondaş, A. in 2016 20th National Biomedical Engineering Meeting (BIYOMUT). 1–4 (IEEE).

  29. M. Divya, K. Saravanan, G.N. Balaji, S.C. Pandian, Light weight & low cost power bank based on LM7805 regulator for hand held applications. Int. J. Latest Technol. Eng. Manage. Appl. Sci. (IJLTEMAS) 7, 201–205 (2018)

    Google Scholar 

  30. Brooks, R. A. An electronic compass for small autonomous robots, Citeseer, (1993)

  31. C. Bharatiraja, J. Munda, I. Vaghasia, R. Valiveti, P. Manasa, Low cost real time centralized speed control of DC motor using lab view-NI USB 6008. Int. J. Power Electron. Drive Syst. 3, 656–664 (2016)

    Google Scholar 

  32. Z. Sun, J. Fan, H. Li, H. Jiang, Current status of single particle imaging with X-ray lasers. Appl. Sci. 8, 132 (2018)

    Article  Google Scholar 

  33. P.J. Moncure, Z.C. Simon, J.E. Millstone, J.E. Laaser, Relationship between gel mesh and particle size in determining nanoparticle diffusion in hydrogel nanocomposites. J. Phys. Chem. B 126, 4132–4142 (2022)

    Article  CAS  PubMed  Google Scholar 

  34. S. Lin, Y. Mao, R. Radovitzky, X. Zhao, Instabilities in confined elastic layers under tension: fringe, fingering and cavitation. J. Mech. Phys. Solids 106, 229–256 (2017)

    Article  Google Scholar 

  35. S.H. Kim et al., The effect of ζ-potential and hydrodynamic size on nanoparticle interactions in hydrogels. Part. Part. Syst. Charact. 36, 1800292 (2019)

    Article  Google Scholar 

  36. L.H. Cai, S. Panyukov, M. Rubinstein, Hop** diffusion of nanoparticles in polymer matrices. Macromolecules 48, 847–862 (2015). https://doi.org/10.1021/ma501608x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Michael Rubinstein, R. H. C. Polymer Physics. (2003)

  38. Y.J. Yang, D.J. Mai, S. Li, M.A. Morris, B.D. Olsen, Tuning selective transport of biomolecules through site-mutated nucleoporin-like protein (NLP) hydrogels. Biomacromol 22, 289–298 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Alicia Withrow for help with transmission electron microscopy imaging and Wei Zhang and Romilly Benedict for help with the dynamic light scattering characterization.

Funding

This research was funded by NSF-CBET-2320716.

Author information

Authors and Affiliations

Authors

Contributions

CY: Methodology, Data acquisition, Writing-original draft. SL: Conceptualization, Supervision, Writing-review and editing.

Corresponding author

Correspondence to Shaoting Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1028 KB)

Supplementary file2 (MOV 25473 KB)

Supplementary file3 (MOV 4566 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, C., Lin, S. A mechano-diffusion characterization platform for probing strain-programmable nanoparticle diffusion in hydrogels. MRS Communications (2024). https://doi.org/10.1557/s43579-024-00596-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43579-024-00596-7

Keywords

Navigation