Log in

Enhanced syngas (H2/CO) production by Co/CeO2 nanorods catalyst through dry reforming of methane

  • Advanced Catalytic Materials: Nano and Bulk Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This study presents the synthesis and characterization of the Co supported on CeO2 nanorods (NR) catalyst to investigate catalytic performance towards efficient hydrogen production. The catalyst was characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Temperature-programmed reduction measurements showed that the Co/CeO2-NR active phase was reduced below 500°C. Adding Co to CeO2-NR enhances the basicity of the raw CeO2-NR and greatly improves the conversion to 70% for CO2 and 55% for CH4. In addition, density functional theory calculations using Halgren–Lipscomb indicate electron donation from Co to CeO2-NR promotes feasible breaking of C–H bonds.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The data support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. L. Li Xu, H. Wen, X. **, Q. Ming Bing, J. Yao Liu, DFT study on dry reforming of methane over Ni2Fe overlayer of Ni(1 1 1) surface. Appl. Surf. Sci. 443, 515–524 (2018). https://doi.org/10.1016/J.APSUSC.2018.02.268

    Article  Google Scholar 

  2. A.M. Alhassan et al., Advances in catalytic dry reforming of methane (DRM): emerging trends, current challenges, and future perspectives. J. Clean. Prod. 423, 138638 (2023). https://doi.org/10.1016/j.jclepro.2023.138638

    Article  CAS  Google Scholar 

  3. Y. Tang et al., Synergy of single-atom Ni1 and Ru1 Sites on CeO2 for dry reforming of CH4. J. Am. Chem. Soc. 141(18), 7283–7293 (2019). https://doi.org/10.1021/jacs.8b10910

    Article  CAS  PubMed  Google Scholar 

  4. Z. Bian, S. Das, M.H. Wai, P. Hongmanorom, S. Kawi, A review on bimetallic nickel-based catalysts for CO2 reforming of methane. ChemPhysChem 18(22), 3117–3134 (2017). https://doi.org/10.1002/cphc.201700529

    Article  CAS  PubMed  Google Scholar 

  5. A. Claudio-Piedras et al., One dimensional Pt/CeO2-NR catalysts for hydrogen production by steam reforming of methanol: effect of Pt precursor. Catal. Today 360, 55–62 (2021). https://doi.org/10.1016/J.CATTOD.2019.08.013

    Article  CAS  Google Scholar 

  6. L. González-Rovira et al., Single-step process to prepare CeO2 nanotubes with improved catalytic activity. Nano Lett. 9(4), 1395–1400 (2009). https://doi.org/10.1021/nl803047b

    Article  CAS  PubMed  Google Scholar 

  7. D. Zhang, C. Pan, L. Shi, L. Huang, J. Fang, H. Fu, A highly reactive catalyst for CO oxidation: CeO2 nanotubes synthesized using carbon nanotubes as removable templates. Microporous Mesoporous Mater. 117(1–2), 193–200 (2009). https://doi.org/10.1016/J.MICROMESO.2008.06.022

    Article  CAS  Google Scholar 

  8. D. Zhang, X. Du, L. Shi, R. Gao, Shape-controlled synthesis and catalytic application of ceria nanomaterials. Dalton Trans. 41(48), 14455–14475 (2012). https://doi.org/10.1039/C2DT31759A

    Article  CAS  PubMed  Google Scholar 

  9. R. Pérez-Hernández, G. Mondragón-Galicia, A. AllendeMaravilla, J. Palacios, Nano-dimensional CeO2 nanorods for high Ni loading catalysts: H2 production by autothermal steam reforming of methanol reaction. Phys. Chem. Chem. Phys. 15(30), 12702–12708 (2013). https://doi.org/10.1039/C3CP52032C

    Article  PubMed  Google Scholar 

  10. D.G. Araiza, A. Gómez-Cortés, G. Díaz, Partial oxidation of methanol over copper supported on nanoshaped ceria for hydrogen production. Catal. Today 282, 185–194 (2017). https://doi.org/10.1016/J.CATTOD.2016.06.055

    Article  CAS  Google Scholar 

  11. A.S. Al-Fatesh, M.A. Naeem, A.H. Fakeeha, A.E. Abasaeed, The effect of Sc promoter on the performance of Co/TiO2–P25 catalyst in dry reforming of methane. Bull. Korean Chem. Soc. 36(8), 2081–2088 (2015). https://doi.org/10.1002/bkcs.10408

    Article  CAS  Google Scholar 

  12. F. Morales Anzures et al., Synthetic gas production by dry reforming of methane over Ni/Al2O3–ZrO2 catalysts: High H2/CO ratio. Int. J. Hydrogen Energy 46(51), 26224–26233 (2021). https://doi.org/10.1016/J.IJHYDENE.2021.05.073

    Article  CAS  Google Scholar 

  13. G. Modragón-Galicia et al., Catalytic aspects of Pt/Pd supported on ZnO rods for hydrogen production in methanol steam reforming. Top. Catal. 65(13), 1556–1569 (2022). https://doi.org/10.1007/s11244-022-01633-2

    Article  CAS  Google Scholar 

  14. A. Trovarelli, Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. 38(4), 439–520 (1996). https://doi.org/10.1080/01614949608006464

    Article  CAS  Google Scholar 

  15. M. Zabilskiy, P. D**ović, E. Tchernychova, O.P. Tkachenko, L.M. Kustov, A. Pintar, Nanoshaped CuO/CeO2 materials: effect of the exposed ceria surfaces on catalytic activity in N2O decomposition reaction. ACS Catal. 5(9), 5357–5365 (2015). https://doi.org/10.1021/acscatal.5b01044

    Article  CAS  Google Scholar 

  16. R. Pérez-Hernández, Reactivity of Pt/Ni supported on CeO2-nanorods on methanol steam reforming for H2 production: steady state and DRIFTS studies. Int. J. Hydrogen Energy 46(51), 25954–25964 (2021). https://doi.org/10.1016/J.IJHYDENE.2021.03.125

    Article  Google Scholar 

  17. M. Ramos et al., In-situ HRTEM study of the reactive carbide phase of Co/MoS2 catalyst. Ultramicroscopy 127, 64–69 (2013). https://doi.org/10.1016/j.ultramic.2012.07.012

    Article  CAS  PubMed  Google Scholar 

  18. K.A. Dick, Gas-phase materials synthesis in environmental transmission electron microscopy. MRS Bull. (2023). https://doi.org/10.1557/s43577-023-00579-4

    Article  Google Scholar 

  19. Z. Wang, X.M. Cao, J. Zhu, P. Hu, Activity and coke formation of nickel and nickel carbide in dry reforming: a deactivation scheme from density functional theory. J. Catal. 311, 469–480 (2014). https://doi.org/10.1016/J.JCAT.2013.12.015

    Article  CAS  Google Scholar 

  20. D. Pakhare, J. Spivey, A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 43(22), 7813–7837 (2014). https://doi.org/10.1039/C3CS60395D

    Article  CAS  PubMed  Google Scholar 

  21. M.C. Gutiérrez et al., MgO impregnation to Al2O3 supported Ni catalyst for SYNGAS production using greenhouse gases: some aspects of chemical state of Ni species. Int. J. Hydrogen Energy 52, 1131–1140 (2024). https://doi.org/10.1016/j.ijhydene.2023.11.223

    Article  CAS  Google Scholar 

  22. Y. Wong et al., Dry reforming of methane on cobalt catalysts: DFT-based insights into carbon deposition versus removal. J. Phys. Chem. C 125(40), 21902–21913 (2021). https://doi.org/10.1021/acs.jpcc.1c04819

    Article  CAS  Google Scholar 

  23. F. Anzures, P. Hernandez, C. Ornelas-Gutiérrez, F.J. Tzompantzi, R. Pérez-Hernández, Synthesis by the sol–gel method and characterization of Pt-promoted CuO/TiO2–ZrO2 catalysts for decomposition of 2-propanol. Catal. Today (2018). https://doi.org/10.1016/j.cattod.2018.03.017

    Article  Google Scholar 

  24. F. Zhang et al., In situ elucidation of the active state of Co–CeOx catalysts in the dry reforming of methane: the important role of the reducible oxide support and interactions with cobalt. ACS Catal. 8(4), 3550–3560 (2018). https://doi.org/10.1021/acscatal.7b03640

    Article  CAS  Google Scholar 

  25. P.G. Lustemberg et al., Direct conversion of methane to methanol on Ni-ceria surfaces: metal-support interactions and water-enabled catalytic conversion by site blocking. J. Am. Chem. Soc. 140(24), 7681–7687 (2018). https://doi.org/10.1021/jacs.8b03809

    Article  CAS  PubMed  Google Scholar 

  26. R. Pérez-Hernández, A. Gutiérrez-Martínez, C.E. Gutiérrez-Wing, Effect of Cu loading on CeO2 for hydrogen production by oxidative steam reforming of methanol. Int. J. Hydrogen Energy 32(14), 2888–2894 (2007). https://doi.org/10.1016/J.IJHYDENE.2007.04.012

    Article  Google Scholar 

  27. J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier, Evaluating the characteristics of multiwall carbon nanotubes. Carbon N Y 49(8), 2581–2602 (2011). https://doi.org/10.1016/J.CARBON.2011.03.028

    Article  CAS  Google Scholar 

  28. M.H. Brijaldo, H.A. Rojas, J.J. Martínez, F.B. Passos, Effect of support on acetic acid decomposition over palladium catalysts. J. Catal. 331, 63–75 (2015). https://doi.org/10.1016/J.JCAT.2015.08.019

    Article  CAS  Google Scholar 

  29. D. Bom et al., Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett. 2(6), 615–619 (2002). https://doi.org/10.1021/nl020297u

    Article  CAS  Google Scholar 

  30. J. Reyna-Alvarado, O.A. López-Galán, M. Ramos, J. Rodríguez, R. Pérez-Hernández, A theoretical catalytic mechanism for methanol reforming in CeO2 vs Ni/CeO2 by energy transition states profiles. Catal. Today (2021). https://doi.org/10.1016/j.cattod.2021.05.009

    Article  Google Scholar 

Download references

Acknowledgments

The Advanced Microscopy Center of TÜ-Darmstadt at Germany, Universidad Autónoma de Ciudad Juárez for the use of computing resources and BIOVIA-Materials Studio© licensing and to Instituto Nacional de Investigaciones Nucleares (ININ) for the usage of laboratory facilities. This project is funded by CONAHCyT-SENER (226151) and M. R. thanks Sistema Nacional de Investigadoras e Investigadores fellowship program of CONAHCyT-México (222146). J. Reyna acknowledged CONAHCyT through Programa Nacional de Posgrados de Calidad solicitation number 1022565.

Funding

Funding for this work was partially provided by CONAHCyT-SENER solicitation #226151, Sistema Nacional de Investigadores y Investigadoras (SNII) from CONAHCyT-Mexico Grant Numbers 790769 and 222146.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, JRA, RPH. and MARM.; investigation, JRA.; Synthesis, RPH. Characterizations, JRA, JTD, OR, RPH, and LM.; writing—original draft preparation, JRA, MARM.; writing—review, data analysis, and editing, JRA, RPH, OALG, and MARM. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Raúl Pérez-Hernández or Manuel Ramos.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuel Ramos Murillo was an editor of this journal during the review and decision stage. For the MRS Communications policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editormanuscripts/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyna-Alvarado, J., López-Galán, O.A., Trimmer, J. et al. Enhanced syngas (H2/CO) production by Co/CeO2 nanorods catalyst through dry reforming of methane. MRS Communications (2024). https://doi.org/10.1557/s43579-024-00585-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43579-024-00585-w

Keywords

Navigation