Log in

Triboelectric and piezoelectric materials for smart health in human-integrated healthcare systems

  • Additive Manufacturing of Functional and Smart Composites Prospective
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This paper presents a comprehensive exploration of the role of smart materials, specifically triboelectric and piezoelectric materials, in the context of human-integrated healthcare systems. The study begins by elucidating the fundamentals of smart materials in healthcare, providing a detailed definition and characteristics of these materials and underscoring their paramount importance in advancing healthcare technologies. The research approach employed in this study involves a combination of literature review, experimental investigation, and computational modeling to analyze the potential of smart materials in healthcare applications. The subsequent sections delve into the individual contributions of triboelectric and piezoelectric materials in healthcare systems, outlining their unique attributes and potential applications. Eventually, real-world implementation challenges, such as scaling p production, ensuring stability, and establishing ethical deployment protocols, are meticulously examined.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. A. Matin Nazar, R. Mohsenian, A. Rayegani, M. Shadfar, P. Jiao, Skin-contact triboelectric nanogenerator for energy harvesting and motion sensing: Principles, challenges, and perspectives. Biosensors 13(9), 872 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. P. Jiao, J. Mueller, J.R. Raney, X.R. Zheng, A.H. Alavi, Mechanical metamaterials and beyond. Nat. Commun. 14, 6004 (2023). https://doi.org/10.1038/s41467-023-41679-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. Rayegani, M. Saberian, Z. Delshad, J. Liang, M. Sadiq, A.M. Nazar, S.A.H. Mohsan, M.A. Khan, Recent advances in self-powered wearable sensors based on piezoelectric and triboelectric nanogenerators. Biosensors 13(1), 37 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  4. A.H. Gandomi, A.H. Alavi, A. Asghari, H. Niroomand, A.M. Nazar, An innovative approach for modeling of hysteretic energy demand in steel moment resisting frames. Neural Comput. Appl. 24(6), 1285–1291 (2013)

    Article  Google Scholar 

  5. A.M. Nazar, P. Jiao, Q. Zhang, K.-J.I. Egbe, A.H. Alavi, A new structural health monitoring approach based on smartphone measurements of magnetic field intensity. IEEE Instrum. Meas. Mag. 24, 49–58 (2021)

    Article  Google Scholar 

  6. P. Jiao, A. Matin Nazar, Y. Yang, Ocean wave energy collector based on magnetic force and triboelectric effect (US Patent No. US20220307458A1). (2022)

  7. A.M. Nazar, K.J. Egbe, P.C. Jiao, Magnetic structured triboelectric nanogenerators for energy harvesting. Appl. Mech. Mater. 909, 81–88 (2022)

    Article  Google Scholar 

  8. K.J. Egbe, A.M. Nazar, P.C. Jiao, Magnet-actuated piezoelectric harvester for energy harvesting from fluids. Appl. Mech. Mater. 909, 89–98 (2022)

    Article  Google Scholar 

  9. K.-J.I. Egbe, A. Matin Nazar, P. Jiao, Piezoelectric-triboelectric-electromagnetic hybrid rotational energy harvesters (H-REH). Int. J. Mech. Sci. 235, 107722 (2022)

    Article  Google Scholar 

  10. P. Jiao, A. Matin Nazar, K.-J.I. Egbe, A. Rayegani, Magnetically circular layers triboelectric nanogenerators (MCL-TENG) for velocity sensing and damage detection. Sustain. Energy Technol. Assess. 53, 102644 (2022)

    Google Scholar 

  11. K. Barri, P. Jiao, Q. Zhang, J. Chen, Z.L. Wang, A.H. Alavi, Multifunctional meta-tribomaterial nanogenerators for energy harvesting and active sensing. Nano Energy 86, 106074 (2021). https://doi.org/10.1016/j.nanoen.2021.106074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Matin Nazar, K.-J.I. Egbe, P. Jiao, Hybrid piezoelectric and triboelectric nanogenerators for energy harvesting and walking sensing. Energ. Technol. 10(6), 2200063 (2022). https://doi.org/10.1002/ente.202200063

    Article  CAS  Google Scholar 

  13. P. Jiao, K.-J.I. Egbe, A.M. Nazar, Y. Yang, H. Wang, Oscillatory magnetic piezoelectric nanogenerators under low-frequency and low-amplitude excitations. Sustain. Energy Technol. Assess. 52, 102022 (2022)

    Google Scholar 

  14. P. Jiao, H. Zhang, W. Li, Origami tribo-metamaterials with mechanoelectrical multistability. ACS Appl. Mater. Interfaces 15(2), 2873–2880 (2023). https://doi.org/10.1021/acsami.2c16681

    Article  CAS  PubMed  Google Scholar 

  15. P. Jiao, A. Matin Nazar, K.-J.I. Egbe, K. Barri, A.H. Alavi, Magnetic capsulate triboelectric nanogenerators. Sci. Rep. 12(1), 89 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Y. Wang, A. Matin Nazar, J. Wang, K. **a, D. Wang, X. Ji, P. Jiao, Rolling spherical triboelectric nanogenerators (RS-TENG) under low-frequency ocean wave action. J. Mar. Sci. Eng. 10(1), 5 (2021)

    Article  Google Scholar 

  17. P. Jiao, X. Ye, C. Zhang, W. Li, H. Wang, Vision-based real-time marine and offshore structural health monitoring system using underwater robots. Comput. -Aided Civil Infrastruct. Eng. 39(2), 281–299 (2022). https://doi.org/10.1111/mice.12993

    Article  Google Scholar 

  18. A. Matin Nazar, K.-J. Idala Egbe, A. Abdollahi, M.A. Hariri-Ardebili, Triboelectric nanogenerators for energy harvesting in ocean: A review on application and hybridization. Energies 14(18), 5600 (2021)

    Article  CAS  Google Scholar 

  19. K.-J.I. Egbe, A. Matin Nazar, P. Jiao, Y. Yang, X. Ye, H. Wang, Vibrational turbine piezoelectric nanogenerators for energy harvesting in multiphase flow fields. Energy Rep. 7, 6384–6393 (2021)

    Article  Google Scholar 

  20. A. Matin Nazar, K.-J.I. Egbe, P. Jiao, Y. Wang, Y. Yang, Magnetic lifting triboelectric nanogenerators (ml-TENG) for energy harvesting and active sensing. APL Mater. 9(9), 091111 (2021)

    Article  CAS  Google Scholar 

  21. A. Varmaghani, A. Matin Nazar, M. Ahmadi, A. Sharifi, S. Jafarzadeh Ghoushchi, Y. Pourasad, DMTC: Optimize energy consumption in dynamic wireless sensor network based on fog computing and fuzzy multiple attribute decision-making. Wirel. Commun. Mob. Comput. 2021, 1–14 (2021)

    Article  Google Scholar 

  22. A.M. Nazar, P. Jiao, Q. Zhang, K.-J.I. Egbe, A.H. Alavi, A new structural health monitoring approach based on smartphone measurements of magnetic field intensity. IEEE Instrum. Meas. Mag. 24(4), 49–58 (2021)

    Article  Google Scholar 

  23. A. Matin Nazar, K.-J.I. Egbe, P. Jiao, A.H. Alavi, A novel multi-mode magnetic triboelectric nanogenerator energy harvesting system. SPIE Smart Structures Nondestructive Evaluation. Proceedings 11589, Behavior and Mechanics of Multifunctional Materials XV, 115890B (2021). https://doi.org/10.1117/12.2581463

  24. K.-J.I. Egbe, A. Matin Nazar, P. Jiao, A.H. Alavi, Harnessing postbuckling instability of piezoelectric cylinders with corrugation for energy harvesting. SPIE Smart Structures Nondestructive Evaluation. Proceedings 11588, Active and Passive Smart Structures and Integrated Systems XV 11588, pp. 277–284. https://doi.org/10.1117/12.2581669

  25. P. Jiao, K.-J.I. Egbe, Y. **e, A. Matin Nazar, A.H. Alavi, Piezoelectric sensing techniques in structural health monitoring: A state-of-the-art review. Sensors 20(13), 3730 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. A. Matin Nazar, Y. Narazaki, A. Rayegani, F. Rahimi Sardo, Recent progress of triboelectric nanogenerators as self-powered sensors in transportation engineering. Measurement 203, 112010 (2022)

    Article  Google Scholar 

  27. A.F. Silva, M. Tavakoli, Domiciliary hospitalization through wearable biomonitoring patches: Recent advances, technical challenges, and the relation to COVID-19. Sensors 20, 6835 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. A. Remuzzi, G. Remuzzi, COVID-19 and Italy: What next? Lancet 395, 1225–1228 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. S.L. Moes, M. Depmann, T.A. Lely, M.N. Bekker, Telemonitoring for COVID-19 positive pregnant women; feasibility and user experience of SAFE@home Corona: Prospective pilot study. BMC Pregnancy Childbirth 22, 556 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. E. Chavda, L. Guedon-Moreau, L. Williatte, E. Cordova, Post-emergency teleconsultations during COVID crisis: TELE-SCOPE tool’s feedback and epidemiological analysis. Digit. Health 8, 2055–2076 (2022)

    Google Scholar 

  31. M. Scherrenberg, V. Storms, A.E. Van der Velde, J. Boyne, W. Bruins, J. Vranken, J.P.L. Leenen, H.-P. Brunner-La Rocca, E.P. De Kluiver, P. Dendale, A Home hospitalisation strategy for patients with an acute episode of heart failure using a digital health-supported platform: A multicentre feasibility study—a rationale and study design. Cardiology 146, 793–800 (2021)

    Article  PubMed  Google Scholar 

  32. M. Tang, A. Reddy, Telemedicine and its past, present, and future roles in providing palliative care to advanced cancer patients. Cancers 2022, 14 (1884)

    Google Scholar 

  33. D. Disalvo, M. Agar, G. Caplan, F.E.M. Murtagh, T. Luckett, N. Heneka, L. Hickman, I. Kinchin, S. Trethewie, C. Sheehan et al., Virtual models of care for people with palliative care needs living in their own home: A systematic meta-review and narrative synthesis. Palliat. Med. 35, 1385–1406 (2021)

    Article  PubMed  Google Scholar 

  34. Y. Yang, P. Jiao, Nanomaterials and nanotechnology for biomedical soft robots. Mater. Today Adv. 17, 100338 (2023). https://doi.org/10.1016/j.mtadv.2022.100338

    Article  CAS  Google Scholar 

  35. C. Mangla, S. Rani, N. Herencsar, An energy-efficient and secure framework for IoMT: An application of smart cities. Sustain. Energy Technol. Assess. 53, 102335 (2022)

    Google Scholar 

  36. S.T. Ahmed, V.V. Kumar, K.K. Singh, A. Singh, V. Muthukumaran, D. Gupta, 6G enabled federated learning for secure IoMT resource recommendation and propagation analysis. Comput. Electr. Eng. 102, 108210 (2022)

    Article  Google Scholar 

  37. B.U. Demirel, I.A. Bayoumy, M.A.A. Faruque, Energy-efficient real-time heart monitoring on edge–fog–cloud internet of medical things. IEEE Internet Things J. 9, 12472–12481 (2022)

    Article  Google Scholar 

  38. P.K. Sadhu, V.P. Yanambaka, A. Abdelgawad, K. Yelamarthi, Prospect of internet of medical things: A review on security requirements and solutions. Sensors 22, 5517 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  39. K. Kakhi, R. Alizadehsani, H.M.D. Kabir, A. Khosravi, S. Nahavandi, U.R. Acharya, The internet of medical things and artificial intelligence: Trends, challenges, and opportunities. Biocybern. Biomed. Eng. 42, 749–771 (2022)

    Article  Google Scholar 

  40. M.A. Scrugli, D. Loi, L. Raffo, P. Meloni, An adaptive cognitive sensor node for ECG monitoring in the internet of medical things. IEEE Access 10, 1688–1705 (2022)

    Article  Google Scholar 

  41. D. Verma, K.R.B. Singh, A.K. Yadav, V. Nayak, J. Singh, R. Pratima, P.R. Solanki, R.P. Singh, Internet of things (IoT) in nano-integrated wearable biosensor devices for healthcare applications. Biosens. Bioelectron. X 11, 100153 (2022)

    CAS  Google Scholar 

  42. R. Vankdothu, M.A. Hameed, A. Ameen, R. Unnisa, Brain image identification and classification on internet of medical things in healthcare system using support value based deep neural network. Comput. Electr. Eng. 102, 108196 (2022)

    Article  Google Scholar 

  43. J. Zhao, S. Zhang, Y. Sun, N. Zhou, H. Yu, H. Zhang, D. Jia, Wearable optical sensing in the medical internet of things (MIoT) for pervasive medicine: Opportunities and challenges. ACS Photonics 9, 2579–2599 (2022)

    Article  CAS  Google Scholar 

  44. S. Li, H. Guo, S. He, H. Yang, K. Liu, G. Gaigai Duan, S. Jiang, Advanced electrospun nanofibers as bifunctional electrocatalysts for flexible metal-air (O2) batteries: Opportunities and challenges. Mater. Des. 214, 110406 (2022)

    Article  CAS  Google Scholar 

  45. M. Qu, L. Shen, J. Wang, N. Zhang, Y. Pang, Y. Wu, J. Ge, L. Peng, J. Yang, J. He, Superhydrophobic, humidity-resistant, and flexible triboelectric nanogenerators for biomechanical energy harvesting and wearable self-powered sensing. ACS Appl. Nano Mater. 5, 9840–9851 (2022)

    Article  CAS  Google Scholar 

  46. X. Wan, Z. Wang, X. Zhao, Q. Hu, Z. Li, Z.L. Wang, L. Li, Flexible and highly piezoelectric nanofibers with organic–inorganic coaxial structure for self-powered physiological multimodal sensing. Chem. Eng. J. 451, 139077 (2022)

    Article  Google Scholar 

  47. Z. Xu, D. Zhang, H. Cai, Y. Yang, H. Zhang, C. Du, Performance enhancement of triboelectric nanogenerators using contact-separation mode in conjunction with the sliding mode and multifunctional application for motion monitoring. Nano Energy 102, 107719 (2022)

    Article  CAS  Google Scholar 

  48. Y. Liu, T.H. Wong, X. Huang, C.K. Yiu, Y. Gao, L. Zhao, J. Zhou, W. Park, Z. Zhao, K. Yao et al., Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing. Nano Energy 99, 107442 (2022)

    Article  CAS  Google Scholar 

  49. J. Yang, J. An, Y. Sun, J. Zhang, L. Zu, H. Li, T. Jiang, B. Chen, Z.L. Wang, Transparent self-powered triboelectric sensor based on PVA/PA hydrogel for promoting human-machine interaction in nursing and patient safety. Nano Energy 97, 107199 (2022)

    Article  CAS  Google Scholar 

  50. S. Cao, H. Zou, B. Jiang, M. Li, Q. Yuan, Incorporation of ZnO encapsulated MoS2 to fabricate flexible piezoelectric nanogenerator and sensor. Nano Energy 102, 107635 (2022)

    Article  CAS  Google Scholar 

  51. J. Zhang, X. Zhao, Z. Wang, Z. Liu, S. Yao, L. Li, Antibacterial, antifreezing, stretchable, and self-healing organohydrogel electrode based triboelectric nanogenerator for self-powered biomechanical sensing. Adv. Mater. Interfaces 9, 2200290 (2022)

    Article  CAS  Google Scholar 

  52. R. Li, X. Wei, J. Xu, J. Chen, B. Li, Z. Wu, Z.L. Wang, Smart wearable sensors based on triboelectric nanogenerator for personal healthcare monitoring. Micromachines 12, 352 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. A. Waseem, I.V. Bagal, A. Abdullah, M.A. Kulkarni, H. Thaalbi, J.-S. Ha, J.K. Lee, S.-W. Ryu, High performance, stable, and flexible piezoelectric nanogenerator based on GaN: Mg nanowires directly grown on tungsten foil. Small 18, 2200952 (2022)

    Article  CAS  Google Scholar 

  54. D. Ponnamma, H. Parangusan, A. Tanvir, M.A.A. AlMa’adeed, Smart and robust electrospun fabrics of piezoelectric polymer nanocomposite for self-powering electronic textiles. Mater. Des. 184, 108176 (2019)

    Article  CAS  Google Scholar 

  55. J. Liu, S. Li, M. Yang, Y. Wang, N. Cui, L. Gu, Coaxial spring-like stretchable triboelectric nanogenerator toward personal healthcare monitoring. Front. Bioeng. Biotechnol. 10, 889364 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  56. Z. Bai, Y. Xu, J. Li, J. Zhu, C. Gao, Y. Zhang, J. Wang, J. Guo, An eco-friendly porous nanocomposite fabric-based triboelectric nanogenerator for efficient energy harvesting and motion sensing. ACS Appl. Mater. Interfaces 12, 42880–42890 (2020)

    Article  CAS  PubMed  Google Scholar 

  57. D.W. Lee, D.G. Jeong, J.H. Kim, H.S. Kim, G. Murillo, G.-H. Lee, H.-C. Song, J.H. Jung, Polarization-controlled PVDF-based hybrid nanogenerator for an effective vibrational energy harvesting from human foot. Nano Energy 76, 105066 (2020)

    Article  CAS  Google Scholar 

  58. M.T. Rahman, S.M.S. Rana, M. Salauddin, M.A. Zahed, S. Lee, E.-S. Yoon, J.Y. Park, Silicone-incorporated nanoporous cobalt oxide and MXene nanocomposite-coated stretchable fabric for wearable triboelectric nanogenerator and self-powered sensing applications. Nano Energy 100, 107454 (2022)

    Article  CAS  Google Scholar 

  59. Y.W. Kim, H.B. Lee, J. Yoon, S.-H. Park, 3D customized triboelectric nanogenerator with high performance achieved via charge-trap** effect and strain-mismatching friction. Nano Energy 95, 107051 (2022)

    Article  CAS  Google Scholar 

  60. K. Lackermair, F. Fischer, J. Manhart, E. Scheurer, M. Graw, D. Boy, C. Lenz, B. Hartrampf, A. Kellnar, L. Sams et al., Determination of time of death by blinded post-mortem interrogation of cardiac implantable electrical devices. Sci. Rep. 12, 8199 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. M.O. Krucoff, T.A. Wozny, A.T. Lee, V.R. Rao, E.F. Chang, Operative technique and lessons learned from surgical implantation of the NeuroPace responsive Neurostimulation® System in 57 consecutive patients. Oper. Neurosurg. 20, E98–E109 (2021)

    Article  Google Scholar 

  62. S.A. Lone, K.C. Lim, K. Kaswan, S. Chatterjee, K.-P. Fan, D. Choi, S. Lee, H. Zhang, J. Cheng, Z.-H. Lin, Recent advancements for improving the performance of triboelectric nanogenerator devices. Nano Energy 99, 107318 (2022)

    Article  CAS  Google Scholar 

  63. E.A. Al-Suhaimi, M.A. Aljafary, T.M. Alfareed, H.A. Alshuyeh, G.M. Alhamid, B. Sonbol, A. Almofleh, F.M. Alkulaifi, R.K. Altwayan, J.N. Alharbi et al., Nanogenerator-based sensors for energy harvesting from cardiac contraction. Front. Energy Res. 10, 900534 (2022)

    Article  Google Scholar 

  64. F.G. Torres, O.P. Troncoso, G.E. De-la-Torre, Hydrogel-based triboelectric nanogenerators: Properties, performance, and applications. Int. J. Energy Res. 46, 5603–5624 (2022)

    Article  CAS  Google Scholar 

  65. H. Ryu, H.M. Park, M.K. Kim, B. Kim, H.S. Myoung, T.Y. Kim, H.J. Yoon, S.S. Kwak, J. Kim, T.H. Hwang et al., Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. Nat. Commun. 12, 4374 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. S. Parandeh, N. Etemadi, M. Kharaziha, G. Chen, A. Nashalian, X. **ao, J. Chen, Advances in triboelectric nanogenerators for self-powered regenerative medicine. Adv. Funct. Mater. 31, 2105169 (2021)

    Article  CAS  Google Scholar 

  67. P. Chen, P. Wu, X. Wan, Q. Wang, C. Xu, M. Yang, J. Feng, B. Hu, Z. Luo, Ultrasound-driven electrical stimulation of peripheral nerves based on implantable piezoelectric thin film nanogenerators. Nano Energy 86, 106123 (2021)

    Article  CAS  Google Scholar 

  68. Y. Long, J. Li, F. Yang, J. Wang, X. Wang, Wearable and implantable electroceuticals for therapeutic electrostimulations. Adv. Sci. 8, 2004023 (2021)

    Article  CAS  Google Scholar 

  69. S. Zhang, M. Bick, X. **ao, G. Chen, A. Nashalian, J. Chen, Leveraging triboelectric nanogenerators for bioengineering. Matter 4, 845–887 (2021)

    Article  CAS  Google Scholar 

  70. A.A. Mathew, A. Chandrasekhar, S. Vivekanandan, A review on real-time implantable and wearable health monitoring sensors based on triboelectric nanogenerator approach. Nano Energy 80, 105566 (2021)

    Article  CAS  Google Scholar 

  71. H.A. Owida, J.I. Al-Nabulsi, N.M. Turab, F. Alnaimat, H. Rababah, M.I. Shakour, Autocharging techniques for implantable medical applications. Int. J. Biomater. 2021, 6074657 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  72. G. Khandelwal, N.P.M. Joseph Raj, S.-J. Kim, Triboelectric nanogenerator for healthcare and biomedical applications. Nano Today 33, 100882 (2020)

    Article  CAS  Google Scholar 

  73. H.-J. Yoon, S.-W. Kim, Nanogenerators to power implantable medical systems. Joule 4, 1398–1407 (2020)

    Article  Google Scholar 

  74. J. Sun, A. Yang, C. Zhao, F. Liu, Z. Li, Recent progress of nanogenerators acting as biomedical sensors in vivo. Sci. Bull. 64, 1336–1347 (2019)

    Article  Google Scholar 

  75. X. Chen, Y. Song, Z. Su, H. Chen, X. Cheng, J. Zhang, M. Han, H. Zhang, Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring. Nano Energy 38, 43–50 (2017)

    Article  CAS  Google Scholar 

  76. J.-G. Sun, T.-N. Yang, C.-Y. Wang, L.-J. Chen, A flexible transparent one-structure tribo-piezo-pyroelectric hybrid energy generator based on bio-inspired silver nanowires network for biomechanical energy harvesting and physiological monitoring. Nano Energy 48, 383–390 (2018)

    Article  CAS  Google Scholar 

  77. M. Zhu, Q. Shi, T. He, Z. Yi, Y. Ma, B. Yang, T. Chen, C. Lee, Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano 13, 1940–1952 (2019)

    CAS  PubMed  Google Scholar 

  78. X. Zhao, Z. Zhang, L. Xu, F. Gao, B. Zhao, T. Ouyang, Z. Kang, Q. Liao, Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition. Nano Energy 85, 106001–106001 (2021). https://doi.org/10.1016/j.nanoen.2021.106001

    Article  CAS  Google Scholar 

  79. H.E. Lee, J.H. Park, D. Jang, J.H. Shin, T.H. Im, J.H. Lee, S. Hong, H.S. Wang, M.S. Kwak, M. Peddigari, C.K. Jeong, Y. Min, C.H. Park, J. Choi, J. Ryu, W. Yoon, D. Kim, K.J. Lee, G. Hwang, Optogenetic brain neuromodulation by stray magnetic field via flash-enhanced magneto-mechano-triboelectric nanogenerator. Nano Energy 75, 104951–104951 (2020). https://doi.org/10.1016/j.nanoen.2020.104951

    Article  CAS  Google Scholar 

  80. Y. **, J. Seo, J.S. Lee, S. Shin, H.J. Park, S. Min, E. Cheong, T. Lee, S.W. Cho, Triboelectric nanogenerator accelerates highly efficient nonviral direct conversion and in vivo reprogramming of fibroblasts to functional neuronal cells. Adv. Mater. 28(34), 7365–7374 (2016). https://doi.org/10.1002/adma.201601900

    Article  CAS  PubMed  Google Scholar 

  81. Y. Yang, L. Chen, J. He, X. Hou, X. Qiao, J. **ong, X. Chou, Flexible and extendable honeycomb-shaped triboelectric nanogenerator for effective human motion energy harvesting and biomechanical sensing. Adv. Materials Technologies 7(1), 2100702 (2021). https://doi.org/10.1002/admt.202100702

    Article  CAS  Google Scholar 

  82. W. Zhang, Y. Zhang, G. Yang, X. Hao, X. Lv, F. Wu, J. Liu, Y. Zhang, Wearable and self-powered sensors made by triboelectric nanogenerators assembled from antibacterial bromobutyl rubber. Nano Energy 82, 105769 (2021). https://doi.org/10.1016/j.nanoen.2021.105769

    Article  CAS  Google Scholar 

  83. B. Yu, L. **g, T. Huang, Z. **ang, M. Liu, X.N. Zhang, Z. Jiang-hua, H. Yu, Core-sheath fiber-based triboelectric nanogenerators for energy harvesting and self-powered straight-arm sit-up sensing. ACS Omega 8(34), 31427–31435 (2023). https://doi.org/10.1021/acsomega.3c04090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Y. Yang, N. Sun, Z. Wen, P. Cheng, H. Zheng, H. Shao, Y. **a, C. Chen, H. Lan, X. **e, C. Zhou, J. Zhong, X. Sun, S.-T. Lee, Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 12(2), 2027–2034 (2018). https://doi.org/10.1021/acsnano.8b00147

    Article  CAS  PubMed  Google Scholar 

  85. A. You, X. Zhang, X. Peng, K. Dong, Y. Lu, Q. Zhang, A skin-inspired triboelectric nanogenerator with an interpenetrating structure for motion sensing and energy harvesting. Macromol. Mater. Eng. 306(8), 2100147 (2021). https://doi.org/10.1002/mame.202100147

    Article  CAS  Google Scholar 

  86. L. Zhang, C. Su, L. Cheng, N. Cui, L. Gu, Y. Qin, R. Yang, F. Zhou, Enhancing the performance of textile triboelectric nanogenerators with oblique microrod arrays for wearable energy harvesting. ACS Appl. Mater. Interfaces 11(30), 26824–26829 (2019). https://doi.org/10.1021/acsami.9b06627

    Article  CAS  PubMed  Google Scholar 

  87. Z.L. Wang, Y. Yang, J. Zhai, J. Wang, Handbook of Triboelectric Nanogenerators. (Springer, Cham, 2023)

    Book  Google Scholar 

  88. Q. Zheng, H. Zhang, B. Shi, X. Xue, Z. Liu, Y. **, Y. Ma, Y. Zou, X. Wang, Z. An, W. Tang, W. Zhang, F. Yang, Y. Liu, X. Lang, Z. Xu, Z. Li, Z.L. Wang, In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 10(7), 6510–6518 (2016). https://doi.org/10.1021/acsnano.6b02693

    Article  CAS  PubMed  Google Scholar 

  89. W. Deng, A. Libanori, X. **ao, J. Fang, X. Zhao, Y. Zhou, G. Chen, S. Li, J. Chen, Computational investigation of ultrasound induced electricity generation via a triboelectric nanogenerator. Nano Energy 91, 106656 (2022). https://doi.org/10.1016/j.nanoen.2021.106656

    Article  CAS  Google Scholar 

  90. C. Zhao, H. Feng, L. Zhang, Z. Li, Y. Zou, P. Tan, H. Ouyang, D. Jiang, M. Yu, C. Wang, L. Hu, L. Xu, W. Wei, L. Zhou, Highly efficient in vivo cancer therapy by an implantable magnet triboelectric nanogenerator. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201808640

    Article  PubMed  PubMed Central  Google Scholar 

  91. Y. Wang, M. Hong, J. Venezuela, T. Liu, M. Dargusch, Expedient secondary functions of flexible piezoelectrics for biomedical energy harvesting. Bioact. Mater. 22, 291–311 (2023). https://doi.org/10.1016/j.bioactmat.2022.10.003

    Article  CAS  PubMed  Google Scholar 

  92. L. Jiang, G. Lu, Y. Zeng, Y. Sun, H. Kang, J. Burford, C. Gong, M.S. Humayun, Y. Chen, Q. Zhou, Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses. Nat. Commun. (2022). https://doi.org/10.1038/s41467-022-31599-4

    Article  PubMed  PubMed Central  Google Scholar 

  93. T. Zhang, H. Liang, Z. Wang, C. Qiu, Y.B. Peng, X. Zhu, J. Li, X. Ge, J. Xu, X. Huang, J. Tong, J. Ou-Yang, X. Yang, F. Li, B. Zhu, Piezoelectric ultrasound energy–harvesting device for deep brain stimulation and analgesia applications. Sci. Adv. (2022). https://doi.org/10.1126/sciadv.abk0159

    Article  PubMed  PubMed Central  Google Scholar 

  94. E.J. Curry, T.T. Le, R. Das, K. Ke, E.M. Santorella, D. Paul, M.T. Chorsi, K.T.M. Tran, J. Baroody, E.R. Borges, B. Ko, A. Golabchi, X. **n, D. Rowe, L. Yue, J. Feng, M.D. Morales-Acosta, Q. Wu, I.-P. Chen, X.T. Cui, Biodegradable nanofiber-based piezoelectric transducer. Proc. Natl. Acad. Sci. 117(1), 214–220 (2020). https://doi.org/10.1073/pnas.1910343117

    Article  CAS  PubMed  Google Scholar 

  95. D.Y. Park, D.J. Joe, D.H. Kim, H. Park, J.H. Han, C.K. Jeong, H. Park, J.G. Park, B. Joung, K.J. Lee, Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 29(37), 1702308 (2017). https://doi.org/10.1002/adma.201702308

    Article  CAS  Google Scholar 

  96. R. Sun, S.C. Carreira, Y. Chen, C. **ang, L. Xu, B. Zhang, M. Chen, I.R. Farrow, F. Scarpa, J. Rossiter, Stretchable piezoelectric sensing systems for self-powered and wireless health monitoring. Adv. Mater. Technol. 4(5), 1900100–1900100 (2019). https://doi.org/10.1002/admt.201900100

    Article  CAS  Google Scholar 

  97. L. Wang, Z. Fei, Z. Wu, Y. Ye, Y. Qi, J. Wang, L. Zhao, C. Zhang, Y. Zhang, G. Qin, Z. Jiang, R. Maeda, Wearable bending wireless sensing with autonomous wake-up by piezoelectric and triboelectric hybrid nanogenerator. Nano Energy 112, 108504–108504 (2023). https://doi.org/10.1016/j.nanoen.2023.108504

    Article  CAS  Google Scholar 

  98. Z. Wang, Z. Liu, G. Zhao, Z. Zhang, X. Zhao, X. Wan, Y. Zhang, Z.L. Wang, L. Li, Stretchable unsymmetrical piezoelectric BaTiO3 composite hydrogel for triboelectric nanogenerators and multimodal sensors. ACS Nano 16(1), 1661–1670 (2022). https://doi.org/10.1021/acsnano.1c10678

    Article  CAS  PubMed  Google Scholar 

  99. T. Huang, Y. Zhang, P. He, G. Wang, X.-X. **a, G. Ding, T.H. Tao, “Self-matched” tribo/piezoelectric nanogenerators using vapor-induced phase-separated poly(vinylidene fluoride) and recombinant spider silk. Adv. Mater. (2020). https://doi.org/10.1002/adma.201907336

    Article  PubMed  PubMed Central  Google Scholar 

  100. M. Zhu, Q. Shi, T. He, Z. Yi, Y. Ma, B. Yang, T. Chen, C. Lee, Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano (2019). https://doi.org/10.1021/acsnano.8b08329

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study is supported in part by the National Key R&D Program of China (2023YFC3008100). The authors acknowledge the Data from the Hainan Observation and Research Station of Ecological Environment and Fishery Resource in Yazhou Bay. P.J. acknowledges the Startup Fund of the Hundred Talents Program at the Zhejiang University, China.

Author information

Authors and Affiliations

Authors

Contributions

R.M.: methodology, visualization, writing—original draft. A.M.N.: conceptualization, methodology, writing—original draft. F.R.: visualization, writing—original draft. M.S.: visualization, writing–original draft. P.Y.: visualization, data curation. W.L.: visualization, data curation. P.J.: conceptualization, resources, supervision, writing—review and editing.

Corresponding author

Correspondence to Pengcheng Jiao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohsenian, R., Matin Nazar, A., Ranjbar, F. et al. Triboelectric and piezoelectric materials for smart health in human-integrated healthcare systems. MRS Communications (2024). https://doi.org/10.1557/s43579-024-00577-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43579-024-00577-w

Keywords

Navigation