Log in

Electro-thermal simulations of beyond-CMOS vanadium dioxide devices and oscillators

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Vanadium dioxide (\(\hbox {VO}_{{2}}\)) devices undergo a thermal insulator-metal-transition by current or voltage injection. In this work, we utilize a dedicated Technology Computer-Aided Design (TCAD) modeling approach to simulate thermal-induced resistive switching effects in \(\hbox {VO}_{{2}}\) devices. In particular, we investigate how the heat dissipation modulates the \(\hbox {VO}_{{2}}\) device behavior. We employ a mixed-mode Simulation Program with Integrated Circuit Emphasis (SPICE)—TCAD approach to simulate the relaxation oscillator circuit based on \(\hbox {VO}_{{2}}\) device, and we show the entangled self-oscillatory behavior of temperature and voltage across the device. Our findings provide essential guidelines for the design of \(\hbox {VO}_{{2}}\) oscillators to be exploited to realize oscillatory neural networks circuits for neuromorphic computing.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. F.C. Hoppensteadt, E.M. Izhikevich, Phys. Rev. Lett. 82(14), 2983–2986 (1999). https://doi.org/10.1103/PhysRevLett.82.2983

    Article  CAS  Google Scholar 

  2. A. Todri-Sanial, S. Carapezzi, C. Delacour, M. Abernot, T. Gil, E. Corti, S.F. Karg, J. Nunez, M. Jimenez, M.J. Avedillo, B. Linares-Barranco, IEEE Trans. Neural Netw. Learn. Syst. 33(5), 1996–2009 (2022). https://doi.org/10.1109/TNNLS.2021.3107771

    Article  Google Scholar 

  3. C. Delacour, S. Carapezzi, M. Abernot, G. Boschetto, N. Azemard, J. Salles, T. Gil, A. Todri-Sanial, 2021 IEEE computer society annual symposium on VLSI (ISVLSI) (2021), pp. 326–331. https://doi.org/10.1109/ISVLSI51109.2021.00066

  4. K.M. Stiefel, G.B. Ermentrout, J. Neurophysiol. 116(6), 2950–2960 (2016). https://doi.org/10.1152/jn.00525.2015

    Article  Google Scholar 

  5. G. Csaba, W. Porod, Appl. Phys. Rev. 7(1), 011302 (2020). https://doi.org/10.1063/1.5120412

    Article  CAS  Google Scholar 

  6. C. Delacour, A. Todri-Sanial, Front. Neurosci. 15, 694549 (2021). https://doi.org/10.3389/fnins.2021.694549

    Article  Google Scholar 

  7. H. Eslahi, T.J. Hamilton, S. Khandelwal, IEEE J. Explor. Solid-State Comput. Devices 6(2), 122–129 (2020). https://doi.org/10.1109/JXCDC.2020.3027541

    Article  Google Scholar 

  8. E. Corti, J.A. Cornejo Jimenez, K.M. Niang, J. Robertson, K.E. Moselund, B. Gotsmann, A.M. Ionescu, S. Karg, Front. Neurosci. 15, 628254 (2021). https://doi.org/10.3389/fnins.2021.628254

    Article  Google Scholar 

  9. K. Liu, S. Lee, S. Yang, O. Delaire, J. Wu, Mater. Today 21(8), 875–896 (2018). https://doi.org/10.1016/j.mattod.2018.03.029

    Article  CAS  Google Scholar 

  10. T. Driscoll, J. Quinn, M. Di Ventra, D.N. Basov, G. Seo, Y.-W. Lee, H.-T. Kim, D.R. Smith, Phys. Rev. B 86, 094203 (2012). https://doi.org/10.1103/PhysRevB.86.094203

    Article  CAS  Google Scholar 

  11. J. Lin, S. Ramanathan, S. Guha, IEEE Trans. Electron. Devices 65(9), 3989–3995 (2018). https://doi.org/10.1109/TED.2018.2859188

    Article  CAS  Google Scholar 

  12. M. Patmiou, V.G. Karpov, G. Serpen, B.R. Weborg, J. Appl. Phys. 128(3), 035701 (2020). https://doi.org/10.1063/5.0019844

    Article  CAS  Google Scholar 

  13. P.A. Premkumar, M. Toeller, I.P. Radu, C. Adelmann, M. Schaekers, J. Meersschaut, T. Conard, S. Van Elshocht, ECS J. Solid State Sci. Technol. 1(4), 169–174 (2012). https://doi.org/10.1149/2.009204jss

    Article  CAS  Google Scholar 

  14. T. Katase, K. Endo, H. Ohta, Phys. Rev. B 92(3), 035302 (2015). https://doi.org/10.1103/PhysRevB.92.035302

    Article  CAS  Google Scholar 

  15. J. Feng, C. Yang, A. Zhang, Q. Li, Z. Fan, M. Qin et al., Appl. Phys. Lett. 113(17), 173104 (2018). https://doi.org/10.1063/1.5032270

    Article  CAS  Google Scholar 

  16. K. Kawatani, T. Kanki, H. Tanaka, Phys. Rev. B 90(5), 054203 (2014). https://doi.org/10.1103/PhysRevB.90.054203

    Article  CAS  Google Scholar 

  17. J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J.W.L. Yim, D.R. Khanal, D.F. Ogletree, J.C. Grossman, J. Wu, Nat. Nanotechnol. 4, 732–737 (2009). https://doi.org/10.1038/nnano.2009.266

    Article  CAS  Google Scholar 

  18. Victory Device User Manual, version 1.19.1.C (Silvaco Inc., Santa Clara, CA, 2021)

  19. S. Carapezzi, C. Delacour, G. Boschetto, E. Corti, M. Abernot, A. Nejim, T. Gil, S. Karg, A. Todri-Sanial, 2021 19th IEEE international new circuits and systems conference (NEWCAS) (Springer, Cham, 2021), pp. 1–5. https://doi.org/10.1109/NEWCAS50681.2021.9462761

    Book  Google Scholar 

  20. J.S. Lee, M. Ortolani, U. Schade, Y.J. Chang, T.W. Noh, Appl. Phys. Lett. 91(13), 133509 (2007)

    Article  Google Scholar 

  21. H. Madan, M. Jerry, A. Pogrebnyakov, T. Mayer, S. Datta, ACS Nano 9(2), 2009–2017 (2015). https://doi.org/10.1021/nn507048d

    Article  CAS  Google Scholar 

  22. E. Corti, B. Gotsmann, K. Moselund, A.M. Ionescu, J. Robertson, S. Karg, Solid-State Electron. 168, 107729 (2020). https://doi.org/10.1016/j.sse.2019.107729

    Article  CAS  Google Scholar 

  23. S. Carapezzi, G. Boschetto, C. Delacour, E. Corti, A. Plews, A. Nejim, S. Karg, A. Todri-Sanial, IEEE J. Emerg. Sel. Top. Circuits Syst. 11(4), 586–596 (2021). https://doi.org/10.1109/JETCAS.2021.3128756

    Article  Google Scholar 

  24. S. Lee, K. Hippalgaonkar, F. Yang, J. Hong, C. Ko, J. Suh, K. Liu, K. Wang, J.J. Urban, X. Zhang, C. Dames, S.A. Hartnoll, O. Delaire, J. Wu, Science 355(6323), 371–374 (2017). https://doi.org/10.1126/science.aag0410

    Article  CAS  Google Scholar 

  25. N. Shukla, A. Parihar, E. Freeman, H. Paik, G. Stone, V. Narayanan, H. Wen, Z. Cai, V. Gopalan, R. Engel-Herbert, D.G. Schlom, A. Raychowdhury, S. Datta, Sci. Rep. 4, 4964 (2014). https://doi.org/10.1038/srep04964

    Article  CAS  Google Scholar 

  26. P. Maffezzoni, L. Daniel, N. Shukla, S. Datta, A. Raychowdhury, IEEE Trans. Circuits Syst. I Regul. Pap. 62(9), 2207–2215 (2015). https://doi.org/10.1109/TCSI.2015.2452332

    Article  Google Scholar 

  27. S. Kumar, M.D. Pickett, J.P. Strachan, G. Gibson, Y. Nishi, R.S. Williams, Adv. Mater. 25(42), 6128–6132 (2013). https://doi.org/10.1002/adma.201302046

    Article  Google Scholar 

  28. A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K.G. West, J.G. Ramirez, I.K. Schuller, Phys. Rev. Lett. 110(5), 056601 (2013). https://doi.org/10.1103/PhysRevLett.110.056601

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to thank Dr. Ahmed Nejim and Dr. Andrew Plews, of Silvaco Europe Ltd., Cambridgeshire, United Kingdom, for providing the customized version of the PCM model used to simulate the \(\hbox {VO}_{{2}}\) material as well as for the valuable discussions about the TCAD and mixed-mode simulations. This work was supported by the European Union’s Horizon 2020 research and innovation programme, EU H2020 NEURONN (www.neuronn.eu) project under Grant 871501.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SC conceived the study concept and designed the simulations. SC performed all the simulations and analyzed the data. SC and ATS evaluated and interpreted the data. SC drafted the manuscript. GB, SK and ATS critically revised the manuscript. ATS supervised the study. The manuscript has been read and approved by all authors.

Corresponding authors

Correspondence to Stefania Carapezzi or Aida Todri-Sanial.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 750 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carapezzi, S., Boschetto, G., Karg, S. et al. Electro-thermal simulations of beyond-CMOS vanadium dioxide devices and oscillators. MRS Communications 12, 427–433 (2022). https://doi.org/10.1557/s43579-022-00196-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00196-3

Keywords

Navigation