Log in

Preparation of porous silicon using magnesiothermic reduction of porous silica glass and electrode characteristics for lithium-ion batteries

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Magnesiothermic reduction was applied to porous silica glass grains with a characteristically interconnected pore structure. The prepared porous silicon maintained the morphology with pore size of approximately 30–40 nm, which was derived from the nanostructure of the starting silica glass. Medium-sized grains of the silica glass produced the largest silicon yield. This result could be explained based on the diffusion-controlled reaction mechanism, involving the reaction of SiO2 with Mg2Si to produce silicon. The electrochemical behavior was investigated using a coin-type cell composed of the prepared porous silicon–carbon mixtures and lithium foil electrodes. The initial charge and discharge capacities reached 1382 and 1187 mAh g−1, respectively, which were close to the theoretical value (1329 mAh g−1). After 50 charge/discharge cycles, 80% of the initial capacity is maintained. These results indicate that porous silicon derived from porous silica glass can be employed as an anode material for lithium-ion batteries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author KK upon request.

References

  1. B.R. Bathey, M.C. Cretella, Review solar-grade silicon. J. Mater. Sci. 17, 3077–3096 (1982)

    CAS  Google Scholar 

  2. M. Nagamori, I. Malinsky, A. Claveau, Thermodynamics of the Si-C-O system for the production of silicon carbide and metallic silicon. Metall. Trans. B 17, 503–514 (1986)

    CAS  Google Scholar 

  3. D. Lynch, Winning the global race for solar silicon. J. Miner. Met. Mater. Soc. 61, 41–48 (2009)

    CAS  Google Scholar 

  4. Y. Iwadate, K. Ohgane, T. Ohkubo, Magnesiothermic reduction of silicon dioxide to obtain fine silicon powder in molten salt media: analysis of reduction mechanism. Electrochem. 86(4), 198–201 (2018)

    CAS  Google Scholar 

  5. K. Prabriputaloong, M.R. Piggott, Reduction of SiO2 by molten Al. J. Am. Ceram. Soc. 56, 184–185 (1973)

    CAS  Google Scholar 

  6. H.D. Banerjee, S. Sen, H.N. Acharya, Investigations on the production of silicon from rice husks by the magnesium method. Mater. Sci. Eng. 52(2), 73–179 (1982)

    Google Scholar 

  7. D.N. Bose, P.A. Govindacharyulu, H.D. Banerjee, Large grain polycrystalline silicon from rice husk. Sol. Energy Mater. 7(3), 319–321 (1982)

    CAS  Google Scholar 

  8. L. Canham, Porous Silicon formation by porous silica reduction, in Handbook of Porous Silicon. ed. by L. Canham (Springer, Cham, 2018), pp.99–109

    Google Scholar 

  9. Y. Cai, S.M. Allan, K.H. Sandhage, F.M. Zalar, Three-dimensional magnesia-based nanocrystal assemblies via low-temperature magnesiothermic reaction of diatom microshells. J. Am. Cer. Soc. 88, 2005–2010 (2005)

    CAS  Google Scholar 

  10. Z. Bao, M.R. Weatherspoon, S. Shian, Y. Cai, P.D. Graham, S.M. Allan, G. Ahmad, M.B. Dickerson, B.C. Church, Z. Kang, H.W. Abernathy III., C.J. Summers, M. Liu, K.H. Sandhage, Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446, 172–175 (2007)

    CAS  PubMed  Google Scholar 

  11. Z. Bao, E.M. Ernst, S. Yoo, K.H. Sandhage, Syntheses of porous self-supporting metal-nanoparticle assemblies with 3D morphologies inherited from biosilica templates (diatom frustules). Adv. Mat. 21, 474–478 (2009)

    CAS  Google Scholar 

  12. E.K. Richman, C.B. Kang, T.B. Brezesinski, S.H. Tolbert, Ordered mesoporous silicon through magnesium reduction of polymer template silica thin films. Nano Lett. 8, 3075–3079 (2008)

    CAS  PubMed  Google Scholar 

  13. M. Ibisate, D. Golmayo, C. López, Silicon direct opals. Adv. Mat. 21, 2899–2902 (2009)

    CAS  Google Scholar 

  14. J. Zhu, J. Wu, Y. Wang, C. Meng, Synthesis and characterization of mesoporous silicon directly from pure silica sodalite single crystal. J. Mater. Sci. 45, 6769–6774 (2010)

    CAS  Google Scholar 

  15. Y. Shi, F. Zhang, Y.-S. Hu, X. Sun, Y. Zhang, H.I. Lee, L. Chen, G. Stucky, Low-temperature pseudomorphic of ordered hierarchical macro-mesoporous SiO2/C nanocomposite to SiC via magnesiothermic reduction. J. Am. Chem. Soc. 132, 5552–5553 (2010)

    CAS  PubMed  Google Scholar 

  16. L. Pallavidino, M. Liscidini, A. Virga, A. Chiodoni, E. Descrovi, J. Cos, L.C. Andreani, C.F. Pirri, F. Geobaldo, F. Giorgis, Synthesis of amorphous silicon/magnesia based direct opals with tunable optical properties. Opt. Mater. 33, 563–569 (2011)

    CAS  Google Scholar 

  17. K. Chen, Z. Bao, J. Shen, G. Wu, B. Zhou, K.H. Sandhage, Freestanding monolithic silicon aerogels. J. Mat. Chem. 22, 16196–16200 (2012)

    CAS  Google Scholar 

  18. J. Fang, C.B. Kang, Y. Huang, S.H. Tolbert, L. Pilon, Thermal conductivity of ordered mesoporous monocrystalline silicon thin films made from magnesium reduction of polymer-templated silica. J. Phys. Chem. C 116, 12926–12933 (2012)

    CAS  Google Scholar 

  19. D.J. Lee, H. Lee, M.-H. Ryou, G.-B. Han, J.-N. Lee, J. Song, J. Choi, K.Y. Cho, Y.M. Lee, J.-K.B.H. Meekins, Y.-C. Lin, J.S. Manser, K. Manukyan, A.S. Mukasyan, P.V. Kamat, P.J. McGinn, Photoactive porous silicon nanopowder. ACS Appl. Mater. Interfaces 5, 2943–2951 (2013)

    Google Scholar 

  20. D.J. Lee, H. Lee, M.-H. Ryou, G.-B. Han, J.-N. Lee, J. Song, J. Choi, K.Y. Cho, Y.M. Lee, J.-K. Park, Electrospun three-dimensional mesoporous silicon nanofibers as an anode material for high-performance lithium secondary batteries. ACS Appl. Mater. Interfaces 5, 12005–12010 (2013)

    CAS  PubMed  Google Scholar 

  21. X. Ji, G. He, C. Andrei, L.F. Nazar, Gentle reduction of SBA-15 silica to its silicon replica with retention of morphology. RSC Adv. 4, 22048–22052 (2014)

    CAS  Google Scholar 

  22. M. Waitzinger, M. Elsaesser, R.J.F. Berger, J. Akbarzadeh, H. Peterlik, N. Hüsing, Self-supporting hierarchically organized silicon networks via magnesiothermic reduction. Monatsh. Chem. 147, 269–278 (2016)

    CAS  Google Scholar 

  23. N.H. Hai, I. Grigoriants, A. Gedanke, Converting Stöber silica and Mediterranean sand to high surface are silicon be a reaction under autogenic pressure at elevated temperatures. J. Phys. Chem. C 113, 10521–10526 (2009)

    CAS  Google Scholar 

  24. L. Batchelor, A. Loni, L.T. Canham, M. Hasan, J.L. Coffer, Manufacture of mesoporous silicon from living plants and agricultural waste: an environmentally friendly and scalable process. SILICON 4, 259–266 (2012)

    CAS  Google Scholar 

  25. A. **ng, S. Tian, H. Tang, D. Losic, Z. Bao, Mesoporous silicon engineered by the reduction of biosilica from rice husk as a high performance anode for lithium ion batteries. RSC Adv. 3, 10145–10149 (2013)

    CAS  Google Scholar 

  26. D.S. Jung, M.-H. Ryou, Y.J. Sung, S.B. Park, J.W. Choi, Recycling rice husks for high capacity lithium battery anodes. Proc. Natl. Acad. Sci. U.S.A. 110, 12229–12234 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Z. Favors, W. Wang, H.H. Bay, Z. Mutlu, K. Ahmed, C. Liu, M. Ozkan, C.S. Ozkan, Scalable synthesis of nano-silicon from beach sand for long cycle life Li-ion batteries. Sci. Rep. 4, 5623 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. J. Petrack, S. Jost, J. Boenigk, M. Epple, Magnesiothermic conversion of the silica-mineralizing golden algae Mallomonas caudata and Synura petersenii to elemental silicon with high geometric precision. Beilstein J. Nanotechnol. 5, 554–560 (2014)

    PubMed  PubMed Central  Google Scholar 

  29. W. Chen, Z. Fan, A. Dhanabalan, C. Chen, C. Wang, Mesoporous silicon anodes prepared by magnesiothermic reduction for lithium ion batteries. J. Electrochem. Soc. 158(9), A1055–A1059 (2011)

    CAS  Google Scholar 

  30. M. Ge, X. Fang, J. Rong, C. Zhou, Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology 24, 422001 (2013)

    CAS  PubMed  Google Scholar 

  31. L. Zeng, R. Liu, L. Han, F. Luo, X. Chen, J. Wang, Q. Qian, Q. Chen, M. Wei, Preparation of a Si/SiO2-ordered-mesoporous-carbon nanocomposite as an anode for high-performance lithium-ion and sodium-ion batteries. Chem. Eur. J. 24, 4841–4848 (2018)

    CAS  PubMed  Google Scholar 

  32. D. T. Ngo, H. T. T. Le, X.-M. Pham, Ji-W. Jung, N. H. Vu, J. G. Fisher, W.-B. Im, Il-D. Kim, C.-J. Park, Highly porous coral-like silicon particles synthesized by an ultra-simple thermal-reduction method. J. Mater. Chem. A 6, 2834–2846 (2018)

  33. J. Entwistle, A. Rennie, S. Patwardhan, A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond. J. Mater. Chem. A 6, 18344–18356 (2018)

    CAS  Google Scholar 

  34. M. Cui, L. Wang, X. Guo, E. Wang, Y. Yang, T. Wu, D. He, S. Liu, H. Yu, Designing of hierarchical mesoporous/microporous silicon-based composite anode material for low-cost high-performance lithium-ions batteries. J. Mater. Chem. A 7, 3874–3881 (2019)

    CAS  Google Scholar 

  35. G. Zhu, W. Luo, L. Wang, W. Jiang, J. Yang, Silicon: toward eco-friendly reduction techniques for lithium-ion battery applications. J. Mater. Chem. A 7, 24715–24737 (2019)

    CAS  Google Scholar 

  36. J. Tang, Q. Yin, Q. Wang, Q. Li, H. Wang, Z. Xu, H. Yao, J. Yang, X. Zhou, J.-K. Kim, L. Zhou, Two-dimensional porous silicon nanosheets as anode materials for high performance lithium-ion batteries. Nanoscale 11, 10984–10991 (2019)

    CAS  PubMed  Google Scholar 

  37. Z. Yang, Y. Du, G. Hou, Y. Ouyang, F. Ding, F. Yuan, Nanoporous silicon spheres preparation via a controllable magnesiothermic reduction as anode for Li-ion batteries. Electrochim. Acta 329, 135141 (2020)

    CAS  Google Scholar 

  38. Y. Zhang, R. Zhang, S. Chen, H. Gao, M. Li, X. Song, H.L. **n, Z. Chen, Diatomite-derived hierarchical porous crystalline-amorphous network for high-performance and sustainable Si anodes. Adv. Funct. Mater. 30, 2005956 (2020)

    CAS  Google Scholar 

  39. G.G. Eshetu, E. Figgemeier, Confronting the challenges of next-generation silicon anode-based lithium-ion batteries: Role of designer electrolyte additives and polymeric binders. Chemsuschem 12, 2515–2539 (2019)

    CAS  PubMed  Google Scholar 

  40. K. Uehira, A. Okada, H. Shiomi, T. Wakasugi, K. Kadono, Preparation of porous silicon from porous silica glass via magnesiothermic reduction. Chem. Lett. 45, 1171–1173 (2016)

    CAS  Google Scholar 

  41. T. Yazawa, Present status and future potential of preparation of porous glass and its application. Key Eng. Mater. 115, 125–146 (1996)

    CAS  Google Scholar 

  42. D. Enke, F. Janowski, W. Schwieger, Porous glasses in the 21th century—A short review. Microporous Mesoporous Mater. 19, 19–30 (2003)

    Google Scholar 

  43. Y. Mao, J.J. Han, Z.J. Zhou, X.J. Zhao, M.-C. Wang, Fabrication of a nanoporous Na2O-B2O3-SiO2 glass plate with controlled pore size. Phys. Chem. Glasses 54, 187–194 (2013)

    CAS  Google Scholar 

  44. K. Matsubara, H. Shiomi, T. Shiono, A. Okada, T. Wakasugi, K. Kadono, Porous silicon prepared from monolithic porous silica glass using a two-step magnesiothermic reduction. Int. J. Ceram. Eng. Sci. 2, 310–319 (2020)

    CAS  Google Scholar 

  45. Diffraction data of crystals were cited from PDF#27-1402 for Si, PDF#35-0773 for Mg2Si, and 45-0946 for MgO.

  46. T. Henmi, T. Shiono, K. Matsubara, T. Kiyomura, H. Kurata, T. Wakasugi, A. Okada, K. Kadono, Controlled preparation of silicon and magnesium silicide on silica glass substrate through magnesiothermic reduction. Int. J. Ceramic Eng. Sci. 2, 66–75 (2020)

    CAS  Google Scholar 

  47. Y. Tsuboi, S. Ura, K. Takahiro, T. Henmi, A. Okada, T. Wakasugi, K. Kadono, Magnesiothermic reduction of silica glass substrate—Chemical states of silicon in the generated layers. J. Asian Ceram. Soc. 5, 341–349 (2017)

    Google Scholar 

  48. I. Gutman, I. Gotman, M. Shapiro, Kinetics and mechanism of periodic structure formation at SiO2/Mg interface. Acta Mater. 54, 4677–4684 (2006)

    CAS  Google Scholar 

  49. I. Gutman, L. Klinger, I. Gotman, M. Shapiro, Model for evolution of periodic layered structure in the SiO2/Mg system. Solids State Ionics 180, 1350–1355 (2009)

    CAS  Google Scholar 

  50. Y.C. Chen, J. Xu, X.H. Fan, X.F. Zhang, L. Han, D.Y. Lin, C. Uher, The mechanism of periodic layer formation during solid-state reaction between Mg and SiO2. Intermetallics 17, 920–926 (2009)

    CAS  Google Scholar 

  51. K. Omote, Y. Ito, S. Kawamura, Small angle x-ray scattering for measuring pore-size distributions on porous low-κ films. Appl. Phys. Lett. 82, 544–546 (2003)

    CAS  Google Scholar 

  52. K. Kubota, S. Shimadzu, N. Yabuuchi, S. Tominaka, S. Shiraishi, M. Abreu-Sepulveda, A. Manivannan, K. Gotoh, M. Fukunishi, M. Dahbi, S. Komada, Structural analysis of sucrose-derived hard carbon and correlation with the electrochemical properties for lithium, sodium, and potassium insertion. Chem. Mater. 32, 2961–2977 (2020)

    CAS  Google Scholar 

  53. H. Takahara, T. Shoji, Y. Ito, Chemical state analysis by X-ray emission spectroscopy. Rigaku J. 38(1), 13–21 (2022)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Yuji Shiramata in Product Division, Rigaku Corporation, for the measurements and data analyses of SAXS. Deguchi, Shinohara, and Kadono thank members in AIST for the technical support of the electrochemical experiments.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MD performed all the experiments, preparation and characterization of samples, and electrochemical experiments, except for the measurements of pore size distributions and XES. KS performed the preparation of porous glasses and samples. HK designed and supervised the study of the electrochemical characterization part. KK (Kuratani) discussed the results of the electrochemical characterization. HT performed the characterization of samples by means of SAXS and XES measurements, and interpreted the results. HS performed the measurements using the surface area and porosity analyzer. AO reviewed the edited manuscript and discussed the revision. KK (Kadono) conceptualized and supervised the study, and wrote the manuscript.

Corresponding author

Correspondence to Kohei Kadono.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3744 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deguchi, M., Shinohara, K., Kobayashi, H. et al. Preparation of porous silicon using magnesiothermic reduction of porous silica glass and electrode characteristics for lithium-ion batteries. Journal of Materials Research 39, 1758–1769 (2024). https://doi.org/10.1557/s43578-024-01344-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-024-01344-2

Navigation