Log in

Icosahedron-dominated tension–compression asymmetry and brittle–ductile transition of metallic glass

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Molecular dynamics simulation was used to study the tension–compression asymmetry and brittle–ductile transition of Ni–Al metallic glass. We found the cooling rate has little influence on its tension–compression asymmetry. Their mechanical properties depend on the components. When the content of Al element is high, the low content of icosahedral clusters leads to poor mechanical properties. Meanwhile, the tension–compression asymmetry is more obvious with the high aspect ratio, which is positively correlated with the content of icosahedral clusters. Compared with aspect ratio, cooling rate and composition have little effect on brittle–ductile transition. The icosahedral clusters transform from low to high symmetry under tensile and compressive loads, accompanied by irreversible atomic rearrangements near the shear bands, leading to limited plasticity. The rejuvenation rate of icosahedral clusters is faster in metallic glasses with high aspect ratio, leading to brittle fracture, which is the mechanism of brittle–ductile transition behavior of metallic glasses.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. F.-F. Wu, K.C. Chan, S.-S. Jiang, S.-H. Chen, G. Wang, Sci. Rep. 4(1), 5302 (2014)

    Article  Google Scholar 

  2. C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman, Y. Su, Acta Mater. 170, 109 (2019)

    Article  CAS  Google Scholar 

  3. H.J. Pei, C.J. Lee, X.H. Du, Y.C. Chang, J.C. Huang, Mater. Sci. Eng., A 528(24), 7317 (2011)

    Article  CAS  Google Scholar 

  4. J. Ding, E. Ma, M. Asta, R.O. Ritchie, Sci. Rep. 5(1), 17429 (2015)

    Article  CAS  Google Scholar 

  5. P. Murali, T.F. Guo, Y.W. Zhang, R. Narasimhan, Y. Li, H.J. Gao, Phys. Rev. Lett. 107(21), 215501 (2011)

    Article  CAS  Google Scholar 

  6. Y.Q. Cheng, A.J. Cao, H.W. Sheng, E. Ma, Acta Mater. 56(18), 5263 (2008)

    Article  CAS  Google Scholar 

  7. X.K. **, D.Q. Zhao, M.X. Pan, W.H. Wang, Y. Wu, J.J. Lewandowski, Phys. Rev. Lett. 94(12), 125510 (2005)

    Article  CAS  Google Scholar 

  8. Y.Q. Cheng, H.W. Sheng, E. Ma, Phys. Rev. B 78(1), 014207 (2008)

    Article  Google Scholar 

  9. J. Luo, Y. Shi, Acta Mater. 82, 483 (2015)

    Article  CAS  Google Scholar 

  10. D. Şopu, A. Foroughi, M. Stoica, J. Eckert, Nano Lett. 16(7), 4467 (2016)

    Article  Google Scholar 

  11. Z.D. Sha, L.C. He, S. Xu, Q.X. Pei, Z.S. Liu, Y.W. Zhang, T.J. Wang, Scripta Mater. 93, 36 (2014)

    Article  CAS  Google Scholar 

  12. J. Yu, M. Wang, S. Lin, Comput. Mater. Sci. 140, 235 (2017)

    Article  CAS  Google Scholar 

  13. C.C. Wang, J. Ding, Y.Q. Cheng, J.C. Wan, L. Tian, J. Sun, Z.W. Shan, J. Li, E. Ma, Acta Mater. 60(13), 5370 (2012)

    Article  CAS  Google Scholar 

  14. Z.T. Wang, J. Pan, Y. Li, C.A. Schuh, Phys. Rev. Lett. 111(13), 135504 (2013)

    Article  CAS  Google Scholar 

  15. Z. Wen, D. Zhang, S. Li, Z. Yue, J. Gao, J. Alloy. Compd. 692, 301 (2017)

    Article  CAS  Google Scholar 

  16. Z. Wen, H. Pei, H. Yang, Y. Wu, Z. Yue, Int. J. Fatigue 111, 243 (2018)

    Article  CAS  Google Scholar 

  17. X.D. Wang, R.T. Qu, Z.Q. Liu, Z.F. Zhang, J. Alloy. Compd. 695, 2016 (2017)

    Article  CAS  Google Scholar 

  18. T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, K. Higashi, Scripta Mater. 46(1), 43 (2002)

    Article  CAS  Google Scholar 

  19. T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, K. Higashi, Intermetallics 10(11), 1071 (2002)

    Article  CAS  Google Scholar 

  20. M. Freels, G.Y. Wang, W. Zhang, P.K. Liaw, A. Inoue, Intermetallics 19(8), 1174 (2011)

    Article  CAS  Google Scholar 

  21. Y. Yue, R. Wang, D.Q. Ma, J.F. Tian, X.Y. Zhang, Q. **g, M.Z. Ma, R.P. Liu, Intermetallics 60, 86 (2015)

    Article  CAS  Google Scholar 

  22. R. Wei, L.B. Chen, H.P. Li, F.S. Li, Intermetallics 85, 54 (2017)

    Article  CAS  Google Scholar 

  23. R. Wei, Y. Chang, Y.F. Li, G. Li, S. Yang, C.J. Zhang, L. He, Mater. Sci. Eng. A 587, 233 (2013)

    Article  CAS  Google Scholar 

  24. L.Y. Chen, B.Z. Li, X.D. Wang, F. Jiang, Y. Ren, P.K. Liaw, J.Z. Jiang, Acta Mater. 61(6), 1843 (2013)

    Article  CAS  Google Scholar 

  25. K. Belouarda, S. Trady, K. Saadouni, M. Mazroui, Eur. Phys. J. B 92, 50 (2019)

    Article  Google Scholar 

  26. G. Kumar, S. Prades-Rodel, A. Blatter, J. Schroers, Scripta Mater. 65(7), 585 (2011)

    Article  CAS  Google Scholar 

  27. K. Albe, Y. Ritter, D. Şopu, Mech. Mater. 67, 94 (2013)

    Article  Google Scholar 

  28. W. Brostow, J.-P. Dussault, B.L. Fox, J. Comput. Phys. 29(1), 81 (1978)

    Article  CAS  Google Scholar 

  29. Z.W. Wu, M.Z. Li, W.H. Wang, K.X. Liu, Phys. Rev. B 88(5), 054202 (2013)

    Article  Google Scholar 

  30. A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. in’t Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, Comput. Phys. Commun. 271, 108171 (2022)

    Article  CAS  Google Scholar 

  31. M.S. Daw, S.M. Foiles, M.I. Baskes, Mater. Sci. Rep. 9(7), 251 (1993)

    Article  CAS  Google Scholar 

  32. R. Saniz, L.-H. Ye, T. Shishidou, A.J. Freeman, Adv. Mater. 74(1), 014209 (2006)

    Google Scholar 

  33. D. Farkas, J. Phys.: Condens. Matter 12(42), R497 (2000)

    CAS  Google Scholar 

  34. D. Tingaud, F. Nardou, R. Besson, Phys. Rev. B 81(17), 174108 (2010)

    Article  Google Scholar 

  35. W.G. Hoover, Phys. Rev. A 31(3), 1695 (1985)

    Article  CAS  Google Scholar 

  36. S. Ghosh, K. Lee, S. Moorthy, Int. J. Solids Struct. 32(1), 27 (1995)

    Article  Google Scholar 

  37. A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2009)

    Article  Google Scholar 

  38. M.L. Falk, J.S. Langer, Phys. Rev. E 57(6), 7192 (1998)

    Article  CAS  Google Scholar 

  39. F. Shimizu, S. Ogata, J. Li, Mater. Trans. 48, 2923 (2007)

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported by the Open Fund of Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering at Wuhan University of Science and Technology (MTMEOF2021B05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **gui Yu or Mingchao Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 384 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Han, C., Yu, F. et al. Icosahedron-dominated tension–compression asymmetry and brittle–ductile transition of metallic glass. Journal of Materials Research 38, 3901–3912 (2023). https://doi.org/10.1557/s43578-023-01107-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01107-5

Keywords

Navigation