Log in

Effect of dislocations and impurities on carrier transport in α-Ga2O3 on m-plane sapphire substrate

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Carrier transport mechanism in Si-doped n-type α-Ga2O3 thin film on m-plane sapphire substrate was investigated by temperature-dependent Hall effect measurements (30–300 K). All films show dislocation density of about ~ 1010–1011 cm−2. In non-degenerate α-Ga2O3, an impurity-band effect is obvious in the low temperature region, and dislocation scattering is the dominant scattering mechanism. In contrast, in degenerate α-Ga2O3, although the dislocation density is comparable to the non-degenerate one, the mobility is dominated by ionized impurity scattering, due to the heavy screening of charged dislocations. The analysis indicates that the carrier transport mechanism in α-Ga2O3 with high dislocation density is different from each other depending on whether α-Ga2O3 is degenerate or non-degenerate. Finally, we estimate critical dislocation density for dislocation-insensitive mobility in α-Ga2O3 on sapphire substrate, and indicate that dislocation densities below ~ 1 × 107–1 × 108 cm−2 will be required for lightly doped drift layers in devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S.J. Pearton, J. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro, Appl. Phys. Rev. 5, 011301 (2018)

    Article  Google Scholar 

  2. E. Ahmadi, Y. Oshima, J. Appl. Phys. 126, 160901 (2019)

    Article  Google Scholar 

  3. Y. Guo, J. Zhang, F. Zhu, Z.X. Yang, J. Xu, J. Yu, J. Phys. D. Appl. Phys. 54, 243001 (2021)

    Article  Google Scholar 

  4. A.J. Green, J. Speck, G. **ng, P. Moens, F. Allerstam, K. Gumaelius, T. Neyer, A. Arias-Purdue, V. Mehrotra, A. Kuramata, K. Sasaki, S. Watanabe, K. Koshi, J. Blevins, O. Bierwagen, S. Krishnamoorthy, K. Leedy, A.R. Arehart, A.T. Neal, S. Mou, S.A. Ringel, A. Kumar, A. Sharma, K. Ghosh, U. Singisetti, W. Li, K. Chabak, K. Liddy, A. Islam, S. Rajan, S. Graham, S. Choi, Z. Cheng, M. Higashiwaki, APL Mater. 10, 029201 (2022)

    Article  CAS  Google Scholar 

  5. D. Shinohara, S. Fujita, Jpn. J. Appl. Phys. 47, 7311 (2008)

    Article  CAS  Google Scholar 

  6. A. Segura, L. Artús, R. Cuscó, R. Goldhahn, M. Feneberg, Phys. Rev. Mater. 1, 024604 (2017)

    Article  Google Scholar 

  7. G.T. Dang, T. Kawaharamura, M. Furuta, M.W. Allen, IEEE Trans. Electron. Devices 62, 3640 (2015)

    Article  CAS  Google Scholar 

  8. M. Oda, R. Tokuda, H. Kambara, T. Tanikawa, T. Sasaki, T. Hitora, Appl. Phys. Express 9, 021101 (2016)

    Article  Google Scholar 

  9. Y.J. Jeong, J.-H. Park, M.J. Yeom, I. Kang, J.Y. Yang, H. Kim, D.-W. Jeon, G. Yoo, Appl. Phys. Express 15, 074001 (2022)

    Article  Google Scholar 

  10. T. Shinohe, in 2022 Int. Power Electron. Conf. (IPEC-Himeji 2022- ECCE Asia) (IEEJ-IAS, 2022), pp. 627–631

  11. S. Kan, S. Takemoto, K. Kaneko, I. Takahashi, M. Sugimoto, T. Shinohe, S. Fujita, Appl. Phys. Lett. 113, 212104 (2018)

    Article  Google Scholar 

  12. K. Kaneko, Y. Masuda, S.I. Kan, I. Takahashi, Y. Kato, T. Shinohe, S. Fujita, Appl. Phys. Lett. 118, 102104 (2021)

    Article  CAS  Google Scholar 

  13. J.G. Hao, H.H. Gong, X.H. Chen, Y. Xu, F.-F. Ren, S.L. Gu, R. Zhang, Y.D. Zheng, J.D. Ye, Appl. Phys. Lett. 118, 261601 (2021)

    Article  CAS  Google Scholar 

  14. N. Suzuki, K. Kaneko, S. Fujita, J. Cryst. Growth 401, 670 (2014)

    Article  CAS  Google Scholar 

  15. R.H. French, J. Am. Ceram. Soc. 73, 477 (1990)

    Article  CAS  Google Scholar 

  16. K. Kaneko, H. Kawanowa, H. Ito, S. Fujita, Jpn. J. Appl. Phys. 51, 020201 (2012)

    Article  Google Scholar 

  17. R. **no, C.S. Chang, T. Onuma, Y. Cho, S.-T. Ho, D. Rowe, M.C. Cao, K. Lee, V. Protasenko, D.G. Schlom, D.A. Muller, H.G. **ng, D. Jena, Sci. Adv. 7, eabd5891 (2021)

    Article  CAS  Google Scholar 

  18. T. Maeda, M. Okigawa, Y. Kato, I. Takahashi, T. Shinohe, AIP Adv. 10, 125119 (2020)

    Article  CAS  Google Scholar 

  19. K. Akaiwa, K. Kaneko, K. Ichino, S. Fujita, Jpn. J. Appl. Phys. 55, 1202BA (2016)

    Article  Google Scholar 

  20. K. Akaiwa, K. Ota, T. Sekiyama, T. Abe, T. Shinohe, K. Ichino, Phys. Status Solidi A 217, 1900632 (2020)

    Article  CAS  Google Scholar 

  21. R.J. Molnar, T. Lei, T.D. Moustakas, Appl. Phys. Lett. 62, 72 (1993)

    Article  CAS  Google Scholar 

  22. D.C. Look, J.R. Sizelove, Phys. Rev. Lett. 82, 1237 (1999)

    Article  CAS  Google Scholar 

  23. C. Mavroidis, J.J. Harris, M.J. Kappers, C.J. Humphreys, Z. Bougrioua, J. Appl. Phys. 93, 9095 (2003)

    Article  CAS  Google Scholar 

  24. P. Pampili, D.V. Dinh, V.Z. Zubialevich, P.J. Parbrook, J. Phys. D: Appl. Phys. 51, 06LT01 (2018)

    Article  Google Scholar 

  25. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, Hoboken, 1981)

    Google Scholar 

  26. M. Marezio, J.P. Remeika, J. Chem. Phys. 46, 1862 (1967)

    Article  CAS  Google Scholar 

  27. D. Cherns, C.G. Jiao, Phys. Rev. Lett. 87, 205504 (2001)

    Article  CAS  Google Scholar 

  28. M. Lundstrom, Fundamentals of Carrier Transport, 2nd edn. (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  29. B. Pödör, Phys. Status Solidi B 16, K167 (1966)

    Article  Google Scholar 

  30. N.G. Weimann, L.F. Eastman, D. Doppalapudi, H.M. Ng, T.D. Moustakas, J. Appl. Phys. 83, 3656 (1998)

    Article  CAS  Google Scholar 

  31. E. Chikoidze, H.J. Von Bardeleben, K. Akaiwa, E. Shigematsu, K. Kaneko, S. Fujita, Y. Dumont, J. Appl. Phys. 120, 025109 (2016)

    Article  Google Scholar 

  32. T.C. Ma, X.H. Chen, Y. Kuang, L. Li, J. Li, F. Kremer, F.F. Ren, S.L. Gu, R. Zhang, Y.D. Zheng, H.H. Tan, C. Jagadish, J.D. Ye, Appl. Phys. Lett. 115, 182101 (2019)

    Article  Google Scholar 

  33. N.F. Mott, Rev. Mod. Phys. 40, 677 (1968)

    Article  CAS  Google Scholar 

  34. Y.P. Song, H.Z. Zhang, C. Lin, Y.W. Zhu, G.H. Li, F.H. Yang, D.P. Yu, Phys. Rev. B 69, 075304 (2004)

    Article  Google Scholar 

  35. P.P. Edwards, M.J. Sienko, Phys. Rev. B 17, 2575 (1978)

    Article  CAS  Google Scholar 

  36. H.M. Ng, D. Doppalapudi, T.D. Moustakas, N.G. Weimann, L.F. Eastman, Appl. Phys. Lett. 73, 821 (1998)

    Article  CAS  Google Scholar 

  37. C.T. Walker, R.O. Pohl, Phys. Rev. 131, 1433 (1962)

    Article  Google Scholar 

  38. S.K. Estreicher, T.M. Gibbons, B. Kang, M.B. Bebek, J. Appl. Phys. 115, 012012 (2014)

    Article  Google Scholar 

  39. S.K. Estreicher, T.M. Gibbons, M.B. Bebek, J. Appl. Phys. 117, 112801 (2015)

    Article  Google Scholar 

  40. T. Wang, J. Carrete, N. Mingo, G.K.H. Madsen, ACS Appl. Mater. Interfaces 11, 8175 (2019)

    Article  CAS  Google Scholar 

  41. A. Sharma, U. Singisetti, Appl. Phys. Lett. 118, 032101 (2021)

    Article  CAS  Google Scholar 

  42. Y.J. Zhang, Z.P. Wang, Y. Kuang, H.H. Gong, J.G. Hao, X.Y. Sun, F.-F. Ren, Y. Yang, S.L. Gu, Y.D. Zheng, R. Zhang, J.D. Ye, Appl. Phys. Lett. 120, 121601 (2022)

    Article  CAS  Google Scholar 

  43. B. Pödör, Phys. Status Solidi A 2, K197 (1970)

    Article  Google Scholar 

  44. Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, A. Kuramata, M. Higashiwaki, D. Jena, T. Luo, Appl. Phys. Lett. 106, 111909 (2015)

    Article  Google Scholar 

  45. M. Stokey, R. Korlacki, M. Hilfiker, H.G. **ng, D. Jena, M. Schubert, Phys. Rev. Mater. 6, 014601 (2022)

    Article  CAS  Google Scholar 

  46. M. Feneberg, J. Nixdorf, M.D. Neumann, N. Esser, L. Artús, R. Cuscó, T. Yamaguchi, R. Goldhahn, Phys. Rev. Mater. 2, 044601 (2018)

    Article  CAS  Google Scholar 

  47. M. Hilfiker, U. Kilic, M. Stokey, R. **no, Y. Cho, H.G. **ng, D. Jena, R. Korlacki, M. Schubert, Appl. Phys. Lett. 119, 092103 (2021)

    Article  CAS  Google Scholar 

  48. H. He, R. Orlando, M.A. Blanco, R. Pandey, E. Amzallag, I. Baraille, M. Rérat, Phys. Rev. B 74, 195123 (2006)

    Article  Google Scholar 

  49. R.K. Ham, Philos. Mag. 6, 1183 (1961)

    Article  Google Scholar 

  50. D. Kapolnek, X.H. Wu, B. Heying, S. Keller, B.P. Keller, U.K. Mishra, S.P. Denbaars, J.S. Speck, Appl. Phys. Lett. 67, 1541 (1995)

    Article  CAS  Google Scholar 

  51. D.C. Look, C.E. Stutz, R.J. Molnar, K. Saarinen, Z. Liliental-Weber, Solid State Commun. 117, 571 (2001)

    Article  CAS  Google Scholar 

  52. D.C. Look, K.D. Leedy, L. Vines, B.G. Svensson, A. Zubiaga, F. Tuomisto, D.R. Doutt, L.J. Brillson, Phys. Rev. B 84, 115202 (2011)

    Article  Google Scholar 

  53. D.C. Look, K.D. Leedy, Sci. Rep. 9, 1290 (2019)

    Article  Google Scholar 

  54. K. Ueno, T. Fudetani, Y. Arakawa, A. Kobayashi, J. Ohta, H. Fujioka, APL Mater. 5, 126102 (2017)

    Article  Google Scholar 

  55. B. Gunning, J. Lowder, M. Moseley, W. Alan Doolittle, Appl. Phys. Lett. 101, 082106 (2012)

    Article  Google Scholar 

  56. N. Miller, E.E. Haller, G. Koblmüller, C. Gallinat, J.S. Speck, W.J. Schaff, M.E. Hawkridge, K.M. Yu, J.W. Ager, Phys. Rev. B 84, 075315 (2011)

    Article  Google Scholar 

  57. N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H.G. **ng, D. Jena, Appl. Phys. Lett. 109, 212101 (2016)

    Article  Google Scholar 

  58. R. **no, N. Yoshimura, K. Kaneko, S. Fujita, Jpn. J. Appl. Phys. 58, 120912 (2019)

    Article  CAS  Google Scholar 

  59. Y. Oshima, K. Kawara, T. Shinohe, T. Hitora, M. Kasu, S. Fujita, APL Mater. 7, 022503 (2019)

    Article  Google Scholar 

  60. R. **no, T. Uchida, K. Kaneko, S. Fujita, Appl. Phys. Express 9, 071101 (2016)

    Article  Google Scholar 

  61. M. Oda, K. Kaneko, S. Fujita, T. Hitora, Jpn. J. Appl. Phys. 55, 1202B4 (2016)

    Article  Google Scholar 

  62. H. Takane, K. Kaneko, Y. Ota, S. Fujita, Jpn. J. Appl. Phys. 60, 055501 (2021)

    Article  CAS  Google Scholar 

  63. M. Grundmann, Appl. Phys. Lett. 116, 082104 (2020)

    Article  CAS  Google Scholar 

  64. T. Uchida, K. Kaneko, S. Fujita, MRS Adv. 3, 171 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was, in part, supported by MIC research and development (JPMI00316). H.T. acknowledges JST, the establishment of university fellowships towards the creation of science technology innovation, Grant Number JPMJFS2123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Takane.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takane, H., Izumi, H., Hojo, H. et al. Effect of dislocations and impurities on carrier transport in α-Ga2O3 on m-plane sapphire substrate. Journal of Materials Research 38, 2645–2654 (2023). https://doi.org/10.1557/s43578-023-01015-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01015-8

Keywords

Navigation