Log in

Microstructure evolution and mechanical properties of the AA2024/AA5083 ultra-fine grained composite fabricated via accumulative roll bonding (ARB) method

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

A Correction to this article was published on 01 November 2023

This article has been updated

Abstract

In the present work, the dissimilar laminated composite (DLC) of the AA2024 and AA5083 aluminum alloys and similar laminated composite (SLC) were produced by four cycles of the accumulative roll bonding (ARB) process. In the fourth ARB cycle of the AA2024/AA5083 DLC, two surfaces with AA2024 composition were put on each other. The microstructural evolution revealed an ultrafine-grained (UFG) structure with an average grain size of 500 nm. The dislocation density was found to increase with the strain during the ARB process, which then reached a saturated level. Also, the microhardness of DLC was more than the SLC-processed specimens due to work hardening and precipitates effects. Moreover, the results showed that changes in the sequence of DLC layers considerably enhanced the tensile strength and elongation. The UTS of the AA5083 SLC, AA2024 SLC, and AA2024/5083 DLC were obtained at 589 MPa, 686 MPa, and 667 MPa, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

Change history

References

  1. R.I. Rodriguez, J.B. Jordon, P.G. Allison, T. Rushing, L. Garcia, Microstructure and mechanical properties of dissimilar friction stir welding of 6061-to-7050 aluminum alloys. Mater. Des. 83, 60–65 (2015)

    Article  CAS  Google Scholar 

  2. D.H. Choi, B.W. Ahn, D.J. Quesnel, S.B. Jung, Behavior of β phase (Al3Mg2) in AA 5083 during friction stir welding. Intermetallics 35, 120–127 (2013)

    Article  CAS  Google Scholar 

  3. L. Su, C. Lu, G. Deng, K. Tieu, Microstructure and mechanical properties of AA5005/AA6061 laminated composite processed by accumulative roll bonding. Metall. Mater. Trans. B 45, 515–522 (2014)

    Article  CAS  Google Scholar 

  4. M. Hosseini, A. Yazdani, H. Danesh Manesh, Al 5083/SiCp composites produced by continual annealing and roll-bonding. Mater. Sci. Eng. A 585, 415–421 (2013)

    Article  CAS  Google Scholar 

  5. P.L. Niu, W.Y. Li, D.L. Chen, Strain hardening behavior and mechanisms of friction stir welded dissimilar joints of aluminum alloys. Mater. Lett. 231, 68–71 (2018)

    Article  CAS  Google Scholar 

  6. R. Zheng, T. Bhattacharjee, A. Shibata, N. Tsuji, C. Ma, Effect of accumulative roll bonding (ARB) and subsequent aging on microstructure and mechanical properties of 2024 Al alloy. Mater. Trans. 57, 1462–1470 (2016)

    Article  CAS  Google Scholar 

  7. V.G. Arigela, N.R. Palukuri, D. Singh, S.K. Kolli, R. Jayaganthan, P. Chekhonin, J. Scharnweber, W. Skrotzki, Evolution of microstructure and mechanical properties in 2014 and 6063 similar and dissimilar aluminium alloy laminates produced by accumulative roll bonding. J. Alloys Compd. 790, 917–927 (2019)

    Article  CAS  Google Scholar 

  8. N. Gupta, B. Ravisankar, S. Kumaran, T.S. Rao, Densification of Al-2024 and Al-2024/Al2O3 powders by conventional P/M Route and ECAP: a comparative study. Trans. Indian Inst. Met. 65, 381–386 (2012)

    Article  CAS  Google Scholar 

  9. K.S. Ghosh, Calorimetric studies of 2024 Al–Cu–Mg and 2014 Al–Cu–Mg–Si alloys of various tempers. J. Therm. Anal. Calorim. 136, 447–459 (2019)

    Article  CAS  Google Scholar 

  10. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials development of the accumulative roll-bonding (ARB) process. Acta Mater. 47, 579–583 (1999)

    Article  CAS  Google Scholar 

  11. J. Vaziri, A. Jahan, E. Borhani, M. Yousefieh, K.L. Edwards, Evaluating promising applications of a new nanomaterial produced by accumulative roll bonding process: a preliminary multiple criteria decision-making approach. Proc. Inst. Mech Eng. Part L J. Mater. Des. Appl. 233, 1023–1032 (2016)

    Google Scholar 

  12. N. Ye, X. Ren, J. Liang, Microstructure and mechanical properties of Ni/Ti/Al/Cu composite produced by accumulative roll bonding (ARB) at room temperature. J. Mater. Res. Technol. 9, 5524–5532 (2020)

    Article  CAS  Google Scholar 

  13. R. Jamaati, M.R. Toroghinejad, M. Hoseini, J.A. Szpunar, Texture development in Al/Al2O3 MMCs produced by anodizing and ARB processes. Mater. Sci. Eng. A 528, 3573–3580 (2011)

    Article  Google Scholar 

  14. X. Huang, N. Tsuji, N. Hansen, Y. Minamino, Microstructural evolution during accumulative roll-bonding of commercial purity aluminum. Mater. Sci. Eng. A 340, 265–271 (2003)

    Article  Google Scholar 

  15. N. Tsuji, T. Iwata, M. Sato, S. Fujimoto, Y. Minamino, Aging behavior of ultrafine grained Al-2 wt%Cu alloy severely deformed by accumulative roll bonding. Sci. Technol. Adv. Mater. 5, 173–180 (2004)

    Article  CAS  Google Scholar 

  16. S.H. Lee, Y. Saito, T. Sakai, H. Utsunomiya, Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding. Mater. Sci. Eng. A 325, 228–235 (2002)

    Article  Google Scholar 

  17. S.A. Hosseini, H.D. Manesh, High-strength, high-conductivity ultra-fine grains commercial pure copper produced by ARB process. Mater. Des. 30, 2911–2918 (2009)

    Article  CAS  Google Scholar 

  18. M. Yousefieh, M. Tamizifar, S.M.A. Boutorabi, E. Borhani, Taguchi optimization on the initial thickness and pre-aging of nano-/ultrafine-grained Al-0.2 wt%Sc alloy produced by ARB. J. Mater. Eng. Perform. 25, 4239–4248 (2016)

    Article  CAS  Google Scholar 

  19. M. Alizadeh, Comparison of nanostructured Al/B4C composite produced by ARB and Al/B4C composite produced by RRB process. Mater. Sci. Eng. A 528, 578–582 (2010)

    Article  Google Scholar 

  20. F. Ferreira, I. Ferreira, E. Camacho, F. Lopes, A.C. Marques, A. Velhinho, Graphene oxide-reinforced aluminium-matrix nanostructured composites fabricated by accumulative roll bonding. Compos. B Eng. 164, 265–271 (2019)

    Article  CAS  Google Scholar 

  21. H. Roghani, E. Borhani, H.R. Jafarian, Effect of a trace amount addition of CuO on aluminum sheet processed by accumulative roll bonding with the common roots and rapid annealing. J. Mater. Res. Technol. 15, 4257–4271 (2021)

    Article  CAS  Google Scholar 

  22. F. Kümmel, T. Hausöl, H.W. Höppel, M. Göken, Enhanced fatigue lives in AA1050A/AA5005 laminated metal composites produced by accumulative roll bonding. Acta Mater. 120, 150–158 (2016)

    Article  Google Scholar 

  23. H. Sadeghinia, H.R. Jafarian, M.T. Salehi, A.R. Eivani, Comprehensive investigation on wear and microstructure development in Al/ti ultrafine grained multi-layered composite produced by Accumulative Roll Bonding (ARB). Mater. Res. Express 6, 116572 (2019)

    Article  Google Scholar 

  24. L. Poovazhagan, P. Ruthran, S. Sreyas, A. Thamizharasan, S. Thejas, Microstructure evolution and mechanical properties of Al 1050/Al 5083 laminate composites produced by accumulative roll bonding process, in Advances in Materials and Metallurgy (pp. 29–37) (2019).

  25. L. Su, C. Lu, A.K. Tieu, G. Deng, X. Sun, Ultrafine grained AA1050/AA6061 composite produced by accumulative roll bonding. Mater. Sci. Eng. A 559, 345–351 (2013)

    Article  CAS  Google Scholar 

  26. S.H.S. Ebrahimi, K. Dehghani, J. Aghazadeh, M.B. Ghasemian, S. Zangeneh, Investigation on microstructure and mechanical properties of Al/Al-Zn-Mg–Cu laminated composite fabricated by accumulative roll bonding (ARB) process. Mater. Sci. Eng. A 718, 311–320 (2018)

    Article  CAS  Google Scholar 

  27. Z. Chen, X. Wu, H. Hu, Q. Chen, Q. Liu, Effect of individual layer shape on the mechanical properties of dissimilar al alloys laminated metal composite sheets. J. Mater. Eng. Perform. 23, 990–1001 (2014)

    Article  CAS  Google Scholar 

  28. T. Mo, Z. Chen, B. Li, H. Huang, W. He, Q. Liu, Effect of cross rolling on the interface morphology and mechanical properties of ARBed AA1100/AA7075 laminated metal composites. J. Alloys Compd. 805, 617–623 (2019)

    Article  CAS  Google Scholar 

  29. N. Tsuji, Superplasticity of ultra-fine grained Al-Mg alloy by ARB. Mater. Trans. 40, 765–771 (1999)

    Article  CAS  Google Scholar 

  30. M.D. Gholami, M. Salamat, R. Hashemi, Study of mechanical properties and wear resistance of Al 1050/Brass (70/30)/Al 1050 composite sheets fabricated by the accumulative roll bonding process. J. Manuf. Process. 71, 407–416 (2021)

    Article  Google Scholar 

  31. M. Hosseini, N. Pardis, H. Danesh-Manesh, M. Abbasi, D.-I. Kim, Structural characteristics of Cu/Ti bimetal composite produced by accumulative roll-bonding (ARB). Mater. Des. 113, 128–136 (2017)

    Article  CAS  Google Scholar 

  32. F. Daneshvar, M. Reihanian, K. Gheisari, Al-based magnetic composites produced by accumulative roll bonding (ARB). Mater. Sci. Eng. B 206, 45–54 (2016)

    Article  CAS  Google Scholar 

  33. T. Hausöl, H.W. Höppel, M. Göken, Tailoring materials properties of UFG aluminium alloys by accumulative roll bonded sandwich-like sheets. J. Mater. Sci. 45, 4733–4738 (2010)

    Article  Google Scholar 

  34. S. Roy, B.R. Nataraj, S. Suwas, S. Kumar, K. Chattopadhyay, Microstructure and texture evolution during accumulative roll bonding of aluminium alloys AA2219/AA5086 composite laminates. J. Mater. Sci. 47, 6402–6419 (2012)

    Article  CAS  Google Scholar 

  35. K. Verstraete, A.L. Helbert, F. Brisset, A. Benoit, P. Paillard, T. Baudin, Microstructure, mechanical properties and texture of an AA6061/AA5754 composite fabricated by cross accumulative roll bonding. Mater. Sci. Eng. A 640, 235–242 (2015)

    Article  CAS  Google Scholar 

  36. F. Kümmel, H.W. Höppel, M. Göken, Layer architecture and fatigue life of ultrafine-grained laminated metal composites consisting of different aluminum alloys. Mater. Sci. Eng. A 702, 406–413 (2017)

    Article  Google Scholar 

  37. F. Kümmel, B. Diepold, A. Prakash, H.W. Höppel, M. Göken, Enhanced monotonic and cyclic mechanical properties of ultrafine-grained laminated metal composites with strong and stiff interlayers. Int. J. Fatigue 116, 379–387 (2018)

    Article  Google Scholar 

  38. M. Heydari Vini, M. Sedighi, M. Mondali, Investigation of bonding behavior of AA1050/AA5083 bimetallic laminates by roll bonding technique. Trans. Indian Inst. Met. 71, 2089–2094 (2018)

    Article  CAS  Google Scholar 

  39. H. Roghani, E. Borhani, S.A.A. Shams, C.S. Lee, H.R. Jafarian, On the microstructure, texture and mechanical properties through heat treatment in Al–CuO nanocomposite fabricated by Accumulative Roll Bonding (ARB). Mater. Sci. Eng. A 828, 142080 (2021)

    Article  CAS  Google Scholar 

  40. M. Dehghan, F. Qods, M. Gerdooei, H. Mohammadian-Semnani, Effect of inter-cycle heat treatment in accumulative roll-bonding (ARB) process on planar isotropy of mechanical properties of AA1050 sheets. Trans. Nonferrous Met. Soc. China. 30, 2381–2393 (2020)

    Article  CAS  Google Scholar 

  41. T.Q. Mo, Z.J. Chen, B.X. Li, P.J. Wang, Q. Liu, Tailoring of interface structure and mechanical properties in ARBed 1100/7075 laminated composites by cold rolling. Mater. Sci. Eng. A 755, 97–105 (2019)

    Article  CAS  Google Scholar 

  42. M.D. Gholami, R. Hashemi, M. Sedighi, The effect of temperature on the mechanical properties and forming limit diagram of aluminum strips fabricated by accumulative roll bonding process. J. Mater. Res. Technol. 9, 1831–1846 (2020)

    Article  CAS  Google Scholar 

  43. B. Beausir and J.-J. Fundenberger, Analysis Tools for Electron and X-ray diffraction. ATEX - software, www.atex-software.eu, Université de Lorraine - Metz. (2017)

  44. R.R. Keller, R.H. Geiss, Transmission EBSD from 10 nm domains in a scanning electron microscope. J. Microsc. 245, 245–251 (2012)

    Article  CAS  Google Scholar 

  45. H. Pirgazi, A. Akbarzadeh, R. Petrov, L. Kestens, Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding. Mater. Sci. Eng. A. 497, 132–138 (2008)

    Article  Google Scholar 

  46. M. Shaarbaf, M.R. Toroghinejad, Nano-grained copper strip produced by accumulative roll bonding process. Mater. Sci. Eng. 473, 28–33 (2008)

    Article  Google Scholar 

  47. M.R. Toroghinejad, R. Jamaati, J. Dutkiewicz, J.A. Szpunar, Investigation of nanostructured aluminum/copper composite produced by accumulative roll bonding and folding process. Mater. Des. 51, 274–279 (2013)

    Article  CAS  Google Scholar 

  48. H.C. Shih, N.-J. Ho, J.C. Huang, Precipitatation behaviors in Al-Cu-Mg and 2024 aluminum alloys. Metall. Mater. Trans. A. 27, 2479–2494 (1996)

    Article  Google Scholar 

  49. E. Borhani, H. Jafarian, H. Adachi, D. Terada, N. Tsuji, Annealing behavior of solution treated and aged Al-0.2wt% Sc deformed by ARB. Mater. Sci. Forum. 669, 211–216 (2010)

    Article  Google Scholar 

  50. Y.H. Zhao, S. Cheng, Y.T. Zhu, E. Ma, Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-Precipitate. Acta Mater. 55, 5822–5832 (2007)

    Article  Google Scholar 

  51. M. Yousefieh, M. Tamizifar, S.M.A. Boutorabi, E. Borhani, An investigation on the microstructure, texture and mechanical properties of an optimized friction stir-welded ultrafine-grained Al–0.2 wt% Sc alloy deformed by accumulative roll bonding. J. Mater. Sci. 53, 4623–4634 (2018)

    Article  CAS  Google Scholar 

  52. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Ultrafine-grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scr. Mater. 39, 1221–1227 (1998)

    Article  CAS  Google Scholar 

  53. H. Adachi, Y. Miyajima, M. Sato, N. Tsuji, Evaluation of Dislocation density for 1100 aluminum with different grain size during tensile deformation by using In-Situ X-ray diffraction technique. Mater. Trans. 56, 671–678 (2015)

    Article  CAS  Google Scholar 

  54. A. Studies, P.O. Box, P.H. Uk, Review Solid-solution hardening. J. Mater. Sci. 28, 2557–2576 (1993)

    Article  Google Scholar 

  55. K. Matsuda, H. Gamada, K. Fujii, Y. Uetani, T. Sato, A. Kamio, S. Ikeno, High-resolution electron microscopy on the structure of guinier-preston zones in an Al-1.6 mass Pet Mg2Si alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 29, 1161–1167 (1998)

    Article  Google Scholar 

  56. Y.M. Wang, E. Ma, Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52, 1699–1709 (2004)

    Article  CAS  Google Scholar 

  57. M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427–556 (2006)

    Article  CAS  Google Scholar 

  58. H.W. Kim, S.B. Kang, N. Tsuji, Y. Minamino, Elongation increase in ultra-fine grained Al-Fe-Si alloy sheets. Acta Mater. 53, 1737–1749 (2005)

    Article  CAS  Google Scholar 

  59. S. Malekjani, P.D. Hodgson, P. Cizek, I. Sabirov, T.B. Hilditch, Cyclic deformation response of UFG 2024 Al alloy. Int. J. Fatigue 33, 700–709 (2011)

    Article  CAS  Google Scholar 

  60. M. Eizadjou, A. Kazemi-Talachi, H. Danesh-Manesh, H. Shakur-Shahabi, K. Janghorban, Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process. Compos. Sci. Technol. 68, 2003–2009 (2008)

    Article  CAS  Google Scholar 

  61. M. Alizadeh, M.H. Paydar, D. Terada, N. Tsuji, Effect of SiC particles on the microstructure evolution and mechanical properties of aluminum during ARB process. Mater. Sci. Eng. A 540, 13–23 (2012)

    Article  CAS  Google Scholar 

  62. M. Eizadjou, H.D. Manesh, K. Janghorban, Microstructure and mechanical properties of ultra-fine grains (UFGs) aluminum strips produced by ARB process. J. Alloys Compd. 474, 406–415 (2009)

    Article  CAS  Google Scholar 

  63. J.H. Cantrell, W.T. Yost, Nonlinear acoustic assessment of precipitate-induced coherency strains in aluminum alloy 2024. Rev. Prog. Quant. Nondestruct. Eval. 15, 1361–1365 (1996)

    Article  Google Scholar 

  64. N. Takata, Y. Ohtake, K. Kita, K. Kitagawa, N. Tsuji, Increasing the ductility of ultrafine-grained copper alloy by introducing fine precipitates. Scr. Mater. 60, 590–593 (2009)

    Article  CAS  Google Scholar 

  65. Y. Zhao, T. Top**, J.F. Bingert, J.J. Thornton, A.M. Dangelewicz, Y. Li, W. Liu, Y. Zhu, Y. Zhou, E.J. Lavernia, High tensile ductility and strength in bulk nanostructured nickel. Adv. Mater. 20, 3028–3033 (2008)

    Article  CAS  Google Scholar 

  66. Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, Y.T. Zhu, Simultaneously increasing the ductility and strength of nanostructured alloys. Adv. Mater. 18, 2280–2283 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors of this article appreciated the services provided by the Semnan University Sha** lab as well as the Mechanical Properties lab and cooperation and good assistant done by Prof. Laszlo S. Toth and his collection from the Lorraine University (LEM3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathallah Qods.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence and no funding was received for conducting this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author list of this article was corrected. Surya N Kumaran is added as second author with the affiliation Université de Lorraine, CNRS, Arts et Métiers ParisTech, LEM3, 57000, Metz, France.

The author list of this article was corrected. Surya N Kumaran is added as second author with the affiliations Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3), Université de Lorraine, CNRS, Arts et Métiers ParisTech, 57045 Metz, France and Georgia Institute of Technology, CNRS IRL 2958, George W. Woodruff School of Mechanical Engineering, 57070 Metz, France.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajjadi Nikoo, S., Kumaran, S.N., Qods, F. et al. Microstructure evolution and mechanical properties of the AA2024/AA5083 ultra-fine grained composite fabricated via accumulative roll bonding (ARB) method. Journal of Materials Research 38, 2519–2533 (2023). https://doi.org/10.1557/s43578-023-00985-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00985-z

Keywords

Navigation