Log in

Effect of cardiovascular stents’ materials on percutaneous transluminal coronary angioplasty: A biomechanical finite element analysis

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Normal blood flow in atherosclerotic arteries can be restored by percutaneous transluminal coronary angioplasty (PTCA). Cardiovascular stents play an important role in PTCA. However, studies on the biomechanical effects of cardiovascular stent materials on PTCA are lacking. In this study, we selected four cardiovascular stent materials of high clinical interest to evaluate their biomechanical effects on PTCA to provide vascular surgeons with additional tools for selecting cardiovascular stents. The results showed that the biomechanical effects of different materials of cardiovascular stents on PTCA were basically the same during the whole process of implantation of atherosclerotic arteries by different materials of cardiovascular stents. But there are some differences in quantitative analysis. In addition, the greater the difference in elastic modulus between different materials of cardiovascular stents, the greater the difference in biomechanical effects on PTCA.

Graphical abstract

In this study, we selected four cardiovascular stent materials of high clinical interest to evaluate their biomechanical effects on PTCA to provide vascular surgeons with additional tools for selecting cardiovascular stents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. H. Yao, Y. He, J. Ma, L. Jiang, J. Li, J. Wang et al., Recent advances in cardiovascular stent for treatment of in-stent restenosis: mechanisms and strategies. Chin. J. Chem. Eng. 37, 12–29 (2021)

    Article  CAS  Google Scholar 

  2. Q. Ma, X. Shi, X. Tan, R. Wang, K. **ong, M.F. Maitz et al., Durable endothelium-mimicking coating for surface bioengineering cardiovascular stents. Bioact. Mater. 6, 4786–4800 (2021)

    Article  CAS  Google Scholar 

  3. M. Qian, Q. Liu, Y. Wei, Z. Guo, Q. Zhao, In-situ biotransformation of nitric oxide by functionalized surfaces of cardiovascular stents. Bioact. Mater. 6, 1464–1467 (2021)

    Article  CAS  Google Scholar 

  4. N. Korei, A. Solouk, M. Haghbin Nazarpak, A. Nouri, A review on design characteristics and fabrication methods of metallic cardiovascular stents. Mater. Today Commun. 31, 103467 (2022)

    Article  CAS  Google Scholar 

  5. L. Bai, Y. Wang, L. Chen, J. Wang, J. Li, S. Zhu et al., Preparation of functional coating on magnesium alloy with hydrophilic polymers and bioactive peptides for improved corrosion resistance and biocompatibility. J. Magn. Alloys 10, 1957–1971 (2022)

    Article  CAS  Google Scholar 

  6. Y. Sheng, R. Hou, C. Liu, Z. Xue, K. Zhang, J. Li et al., Tailoring of biodegradable magnesium alloy surface with schiff base coating via electrostatic spraying for better corrosion resistance. Metals 12, 471 (2022)

    Article  CAS  Google Scholar 

  7. R. Belibel, S. Sali, N. Marinval, A. Garcia-Sanchez, C. Barbaud, H. Hlawaty, PDMMLA derivatives as a promising cardiovascular metallic stent coating: physicochemical and biological evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. 117, 111284 (2020)

    Article  CAS  Google Scholar 

  8. M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27, 1728–1734 (2006)

    Article  CAS  Google Scholar 

  9. A.A. Oliver, M. Sikora-Jasinska, A.G. Demir, R.J. Guillory 2nd., Recent advances and directions in the development of bioresorbable metallic cardiovascular stents: Insights from recent human and in vivo studies. Acta Biomater. 127, 1–23 (2021)

    Article  CAS  Google Scholar 

  10. S.J. Lee, H.H. Jo, K.S. Lim, D. Lim, S. Lee, J.H. Lee et al., Heparin coating on 3D printed poly (l-lactic acid) biodegradable cardiovascular stent via mild surface modification approach for coronary artery implantation. Chem. Eng. J. 378, 122176 (2019)

    Article  Google Scholar 

  11. C. Liang, Y. Tian, X. Zou, Y. Hu, H. Zhou, L. Yang et al., Improve endothelialization of metallic cardiovascular stent via femtosecond laser induced micro/nanostructure dependent cells proliferation and drug delivery control. Colloids Surf. B Biointerfaces 212, 112376 (2022)

    Article  CAS  Google Scholar 

  12. W. Wu, W.Q. Wang, D.Z. Yang, M. Qi, Stent expansion in curved vessel and their interactions: a finite element analysis. J. Biomech. 40, 2580–2585 (2007)

    Article  Google Scholar 

  13. F. Hataminia, R.F. Majidi, A. Najafi Tireh Shabankareh, H. Ghanbari, Green synthesis of oxidized starch with a novel catalyst based on Fe(3)O(4) nanoparticles and H(2)O(2) reagent to form thermoplastic as a stable gel coating on the cardiovascular stents. Int. J. Biol. Macromol. 219, 290–303 (2022)

    Article  CAS  Google Scholar 

  14. Z.Q. Zhang, Y.X. Yang, J.A. Li, R.C. Zeng, S.K. Guan, Advances in coatings on magnesium alloys for cardiovascular stents—a review. Bioact. Mater. 6, 4729–4757 (2021)

    Article  CAS  Google Scholar 

  15. Z. Yang, Y. Yang, L. Zhang, K. **ong, X. Li, F. Zhang et al., Mussel-inspired catalytic selenocystamine-dopamine coatings for long-term generation of therapeutic gas on cardiovascular stents. Biomaterials 178, 1–10 (2018)

    Article  CAS  Google Scholar 

  16. J. Wang, H.L. Qian, S.Y. Chen, W.P. Huang, D.N. Huang, H.Y. Hao et al., miR-22 eluting cardiovascular stent based on a self-healable spongy coating inhibits in-stent restenosis. Bioact. Mater. 6, 4686–4696 (2021)

    Article  CAS  Google Scholar 

  17. G.A. Lakalayeh, M. Rahvar, N. Nazeri, H. Ghanbari, Evaluation of drug-eluting nanoparticle coating on magnesium alloy for development of next generation bioabsorbable cardiovascular stents. Med. Eng. Phys. 108, 103878 (2022)

    Article  Google Scholar 

  18. J.B. Russ, R.L. Li, A.R. Herschman, H. Waisman, V. Vedula, J.W. Kysar et al., Design optimization of a cardiovascular stent with application to a balloon expandable prosthetic heart valve. Mater. Des. 209, 109977 (2021)

    Article  CAS  Google Scholar 

  19. K. Veerubhotla, C.H. Lee, Design of biodegradable 3D-printed cardiovascular stent. Bioprinting. 26, e00204 (2022)

    Article  Google Scholar 

  20. P. Shah, S. Chandra, Review on emergence of nanomaterial coatings in bio-engineered cardiovascular stents. J. Drug Deliv. Sci. Technol. 70, 103224 (2022)

    Article  CAS  Google Scholar 

  21. Y. **n, T. Hu, P.K. Chu, In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomater. 7, 1452–1459 (2011)

    Article  CAS  Google Scholar 

  22. Y. Yamauchi, M. Takahara, O. Iida, Y. Shintani, T. Sugano, Y. Yamamoto et al., Independent predictors of major adverse cardiovascular events at 3 years after aortoiliac stent implantation. J. Vasc. Interv. Radiol. 33(826–33), e1 (2022)

    Google Scholar 

  23. L. Yang, H. Wu, L. Lu, Q. He, B. **, H. Yu et al., A tailored extracellular matrix (ECM) - Mimetic coating for cardiovascular stents by stepwise assembly of hyaluronic acid and recombinant human type III collagen. Biomaterials 276, 121055 (2021)

    Article  CAS  Google Scholar 

  24. C. Liang, Y. Hu, H. Wang, D. **a, Q. Li, J. Zhang et al., Biomimetic cardiovascular stents for in vivo re-endothelialization. Biomaterials 103, 170–182 (2016)

    Article  CAS  Google Scholar 

  25. J. Fu, Y. Su, Y.X. Qin, Y. Zheng, Y. Wang, D. Zhu, Evolution of metallic cardiovascular stent materials: a comparative study among stainless steel, magnesium and zinc. Biomaterials 230, 119641 (2020)

    Article  CAS  Google Scholar 

  26. M. Grujicic, B. Pandurangan, A. Arakere, J.S. Snipes, Fatigue-life computational analysis for the self-expanding endovascular nitinol stents. J. Mater. Eng. Perform. 21, 2218–2230 (2012)

    Article  CAS  Google Scholar 

  27. R.V. Marrey, R. Burgermeister, R.B. Grishaber, R.O. Ritchie, Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis. Biomaterials 27, 1988–2000 (2006)

    Article  CAS  Google Scholar 

  28. M. Benhaddou, M. Ess Sadki, A. Azouzoute, L. Bouselham, M. Ghammouri, F. Jeffali, Numerical modeling of the bending load effect for two geometries design of AISI 316L cardiovascular stent. Mater. Today: Proc. 72, 3287 (2022)

    Google Scholar 

  29. M. Hirschhorn, V. Tchantchaleishvili, R. Stevens, J. Rossano, A. Throckmorton, Fluid-structure interaction modeling in cardiovascular medicine—A systematic review 2017–2019. Med. Eng. Phys. 78, 1–13 (2020)

    Article  Google Scholar 

  30. Z.-Q. Zhang, B.-Z. Li, P.-D. Tong, S.-K. Guan, L. Wang, Z.-H. Qiu et al., Degradation and biocompatibility of one-step electrodeposited magnesium thioctic acid/magnesium hydroxide hybrid coatings on ZE21B alloys for cardiovascular stents. J. Magn. Alloys (2022). https://doi.org/10.1016/j.jma.2022.05.008

    Article  Google Scholar 

  31. V. Finazzi, A.G. Demir, C.A. Biffi, F. Migliavacca, L. Petrini, B. Previtali, Design and functional testing of a novel balloon-expandable cardiovascular stent in CoCr alloy produced by selective laser melting. J. Manuf. Process. 55, 161–173 (2020)

    Article  Google Scholar 

  32. H. Alderson, M. Zamir, Effects of stent stiffness on local haemodynamics with particular reference to wave reflections. J. Biomech. 37, 339–348 (2004)

    Article  CAS  Google Scholar 

  33. W. Wu, L. Petrini, D. Gastaldi, T. Villa, M. Vedani, E. Lesma et al., Finite element shape optimization for biodegradable magnesium alloy stents. Ann. Biomed. Eng. 38, 2829–2840 (2010)

    Article  CAS  Google Scholar 

  34. J. Vishnu, M. Calin, S. Pilz, A. Gebert, B. Kaczmarek, M. Michalska-Sionkowska et al., Superhydrophilic nanostructured surfaces of beta Ti 29Nb alloy for cardiovascular stent applications. Surf. Coat. Technol. 396, 125965 (2020)

    Article  CAS  Google Scholar 

  35. Ž Donik, B. Nečemer, S. Glodež, J. Kramberger, Finite element analysis of the mechanical performance of a two-layer polymer composite stent structure. Eng. Fail. Anal. 137, 106267 (2022)

    Article  CAS  Google Scholar 

  36. R. **ao, X. Feng, W. Liu, W. Zhou, X. Li, I. Song et al., Direct 3D printing of thin-walled cardiovascular stents with negative Poisson’s ratio (NPR) structure and functional metallic coating. Compos. Struct. 306, 116572 (2023)

    Article  CAS  Google Scholar 

  37. M. Bukač, S. Čanić, J. Tambača, Y. Wang, Fluid–structure interaction between pulsatile blood flow and a curved stented coronary artery on a beating heart: a four stent computational study. Comput. Methods Appl. Mech. Eng. 350, 679–700 (2019)

    Article  Google Scholar 

  38. Y.C. Hou, J.A. Li, S.J. Zhu, C. Cao, J.N. Tang, J.Y. Zhang et al., Tailoring of cardiovascular stent material surface by immobilizing exosomes for better pro-endothelialization function. Colloids Surf B Biointerfaces. 189, 110831 (2020)

    Article  CAS  Google Scholar 

  39. Y. Li, J. Wang, K. Sheng, F. Miao, Y. Wang, Y. Zhang et al., Optimizing structural design on biodegradable magnesium alloy vascular stent for reducing strut thickness and raising radial strength. Mater. Des. 220, 110843 (2022)

    Article  CAS  Google Scholar 

  40. Y. Fan, Y. Zhang, Q. Zhao, Y. **e, R. Luo, P. Yang et al., Immobilization of nano Cu-MOFs with polydopamine coating for adaptable gasotransmitter generation and copper ion delivery on cardiovascular stents. Biomaterials 204, 36–45 (2019)

    Article  CAS  Google Scholar 

  41. D. Lv, P. Li, L. Zhou, R. Wang, H. Chen, X. Li et al., Synthesis, evaluation of phospholipid biomimetic polycarbonate for potential cardiovascular stents coating. React. Funct. Polym. 163, 104897 (2021)

    Article  CAS  Google Scholar 

  42. P. Sun, C.-S. Zhang, R. Lan, L. Li, An advanced ALE-mixed finite element method for a cardiovascular fluid–structure interaction problem with multiple moving interfaces. J. Comput. Sci. 50, 101300 (2021)

    Article  Google Scholar 

  43. R. Jayendiran, B. Nour, A. Ruimi, Fluid-structure interaction (FSI) analysis of stent-graft for aortic endovascular aneurysm repair (EVAR): material and structural considerations. J. Mech. Behav. Biomed. Mater. 87, 95–110 (2018)

    Article  CAS  Google Scholar 

  44. S. Motru, M.H. Sachidananda, K.S. Avyaktha, G. Prakanth Kumar, N. Patil, Structural analysis of bulk metallic glass cardio-vascular stent under dynamic and failure criteria. Mater. Today: Proc. 28, 767–775 (2020)

    CAS  Google Scholar 

  45. E. Hasanpur, A. Ghazavizadeh, A. Sadeghi, M. Haboussi, In vitro corrosion study of PLA/Mg composites for cardiovascular stent applications. J. Mech. Behav. Biomed. Mater. 124, 104768 (2021)

    Article  CAS  Google Scholar 

  46. C. Chen, R. Yue, J. Zhang, H. Huang, J. Niu, G. Yuan, Biodegradable Zn-1.5Cu-1.5Ag alloy with anti-aging ability and strain hardening behavior for cardiovascular stents. Mater. Sci. Eng. C Mater. Biol. Appl. 116, 111172 (2020)

    Article  CAS  Google Scholar 

  47. H. Tang, S. Li, Y. Zhao, C. Liu, X. Gu, Y. Fan, A surface-eroding poly(1,3-trimethylene carbonate) coating for magnesium based cardiovascular stents with stable drug release and improved corrosion resistance. Bioact Mater. 7, 144–153 (2022)

    Article  CAS  Google Scholar 

  48. C. Liu, L. Chen, K. Zhang, J. Li, S. Guan, Tailoring ZE21B alloy with nature-inspired extracellular matrix secreted by micro-patterned smooth muscle cells and endothelial cells to promote surface biocompatibility. Int. J. Mol. Sci. 23, 3180 (2022)

    Article  CAS  Google Scholar 

  49. Y. Hou, X. Zhang, J. Li, L. Wang, S. Guan, A multi-functional MgF2/polydopamine/hyaluronan-astaxanthin coating on the biodegradable ZE21B alloy with better corrosion resistance and biocompatibility for cardiovascular application. J. Magn Alloys (2022). https://doi.org/10.1016/j.jma.2022.06.008

    Article  Google Scholar 

  50. Y. Yu, S.-J. Zhu, H.-T. Dong, X.-Q. Zhang, J.-A. Li, S.-K. Guan, A novel MgF2/PDA/S-HA coating on the bio-degradable ZE21B alloy for better multi-functions on cardiovascular application. J. Magn. Alloys (2021). https://doi.org/10.1016/j.jma.2021.06.015

    Article  Google Scholar 

  51. H. Qiu, P. Qi, J. Liu, Y. Yang, X. Tan, Y. **ao et al., Biomimetic engineering endothelium-like coating on cardiovascular stent through heparin and nitric oxide-generating compound synergistic modification strategy. Biomaterials 207, 10–22 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

Financial support for this work has been provided by the Yanglei Academician Expert Workstation of Yunnan Province (202205AF15025).

Author information

Authors and Affiliations

Authors

Contributions

CDD, SLW, LXZ, and YLZ carried out the model development and simulation, data analysis, and drafted the manuscript. CDD, LXZ, TTY, and SLW participated in the study design. CDD, SLW, and TTY participated in revising the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ting-Ting Yan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, CD., Zhang, LX., Wang, SL. et al. Effect of cardiovascular stents’ materials on percutaneous transluminal coronary angioplasty: A biomechanical finite element analysis. Journal of Materials Research 38, 2084–2096 (2023). https://doi.org/10.1557/s43578-023-00949-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00949-3

Keywords

Navigation