Log in

The effect of V on the morphology transformation of TiB2 particles in Al-4.5Cu-0.18 V matrix

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

5wt%TiB2/Al-4.5Cu-0.18 V composite materials were successfully prepared by an in-situ aluminothermic reaction assisted by mechanical agitation. The effect of V on the morphology of TiB2 particles in the Al-4.5Cu-0.18 V matrix was studied by field emission scanning electron microscopy and computer statistical software. It was found that the morphology of TiB2 particles has hexagonal prism-shaped with a small aspect ratio, chamfered hexagonal prism and a few irregular shapes, and its size was about 0–1 μm. There was vanadium-rich shell on the surface of TiB2 particles, which hinder the diffusion of atoms and affect the growth process of TiB2 particles. The adsorption energies of V on different crystal planes of TiB2 were calculated by first-principles, showing that V can be preferentially adsorbed on the {10\(\overline{1 }\)0} planes. Moreover, the composite tensile properties of the Al-4.5Cu-0.18 V matrix could be greatly improved by adding 5wt% TiB2.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Q. Gao, S. Wu, S. Lü, X. Duan, P. An, Preparation of in-situ 5 vol% TiB2 particulate reinforced Al–4.5Cu alloy matrix composites assisted by improved mechanical stirring process. Mater. Des. 94, 79 (2016)

    Article  CAS  Google Scholar 

  2. R. Du, Q. Gao, S. Wu, S. Lü, X. Zhou, Influence of TiB2 particles on aging behavior of in-situ TiB2/Al-4.5Cu composites. Mater. Sci. Eng. A 721, 244 (2018)

    Article  CAS  Google Scholar 

  3. J. Liu, Z. Liu, Z. Dong, X. Cheng, Q. Zheng, J. Li, S. Zuo, Z. Huang, Y. Gao, J. **ng, Q. Han, On the preparation and mechanical properties of in situ small-sized TiB2/Al-4.5Cu composites via ultrasound assisted RD method. J. Alloy. Compd. 765, 1008 (2018)

    Article  CAS  Google Scholar 

  4. T. Xu, X. Ma, L. Zhang, M. Li, S. Zhou, H. Wu, Z. Zhu, Enhancement of load transfer by interfacial bonding in Al-Cu-Mg joints under the in-situ synergistic effect of carbon nanotubes and silicon nitride. Mater. Charact. 191, 112144 (2022)

    Article  CAS  Google Scholar 

  5. Y.-Y. Gao, F. Qiu, Q. Zou, J.-G. Chu, B.-X. Dong, X. Han, H.-Y. Yang, B. Jiang, Q.-C. Jiang, Controlling the sizes of in-situ TiC nanoparticles for high-performance TiC/Al–Cu nanocomposites. Ceram. Int. 47(20), 28584 (2021)

    Article  CAS  Google Scholar 

  6. Y. Chen, S. Song, S. Zhu, X. Cui, F. Zhao, Selective laser remelting of in-situ Al2O3 particles reinforced AlSi10Mg matrix composite: densification, microstructure and microhardness. Vacuum 191, 110365 (2021)

    Article  CAS  Google Scholar 

  7. N. Gangil, A.N. Siddiquee, S. Maheshwari, Aluminium based in-situ composite fabrication through friction stir processing: a review. J. Alloy. Compd. 715, 91 (2017)

    Article  CAS  Google Scholar 

  8. M. Karbalaei Akbari, H.R. Baharvandi, K. Shirvanimoghaddam, Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater. Des. (1980-2015) 66, 150 (2015)

    Article  CAS  Google Scholar 

  9. S. Lei, X. Li, Y. Deng, Y. **ao, Y. Chen, H. Wang, Microstructure and mechanical properties of electron beam freeform fabricated TiB2/Al-Cu composite. Mater. Lett. 277, 128273 (2020)

    Article  CAS  Google Scholar 

  10. F. Chen, Z. Chen, F. Mao, T. Wang, Z. Cao, TiB2 reinforced aluminum based in situ composites fabricated by stir casting. Mater. Sci. Eng. A 625, 357 (2015)

    Article  CAS  Google Scholar 

  11. S. Suresh, Aluminium-titanium diboride (Al-TiB2) metal matrix composites: challenges and opportunities. Procedia Eng. (2012). https://doi.org/10.1016/j.proeng.2012.06.013

    Article  Google Scholar 

  12. H.-Y. Yang, Z.-J. Cai, Q. Zhang, Y. Shao, B.-X. Dong, Q.-Q. Xuan, F. Qiu, Comparison of the effects of Mg and Zn on the interface mismatch and compression properties of 50 vol% TiB2/Al composites. Ceram. Int. 47(15), 22121 (2021)

    Article  CAS  Google Scholar 

  13. J. Sun, X. Zhang, Y. Zhang, N. Ma, H. Wang, Effect of alloy elements on the morphology transformation of TiB2 particles in Al matrix. Micron 70, 21 (2015)

    Article  CAS  Google Scholar 

  14. J. Sun, X. Wang, L. Guo, X. Zhang, H. Wang, Synthesis of nanoscale spherical TiB2 particles in Al matrix by regulating Sc contents. J. Mater. Res. 34(07), 1258 (2019)

    Article  CAS  Google Scholar 

  15. X. Zhang, P. Zhu, L. Zeng, B. Feng, X. Wan, J. Ren, Effect of adding Ce on the hot-tearing susceptibility of the 5TiB2/Al-5Cu composite. Mater. Charact. 168, 110552 (2020)

    Article  CAS  Google Scholar 

  16. S. Yang, R. Zhang, H. Liu, J. Li, H. Yan, Effect of La on microstructure and corrosion behavior of 10%TiB2(p)/Al–5%Cu composites. J. Mater. Res. Technol. 9(4), 7047 (2020)

    Article  CAS  Google Scholar 

  17. D. Huang, D. Yan, S. Ma, X. Wang, Scandium on the formation of in situ TiB2 particulates in an aluminum matrix. J. Mater. Res. 33(18), 2721 (2018)

    Article  CAS  Google Scholar 

  18. F. Meng, Z. Wang, Y. Zhao, D. Zhang, W. Zhang, Microstructures and properties evolution of Al-Cu-Mn alloy with addition of vanadium. Metals 7(1), 10 (2016)

    Article  Google Scholar 

  19. S. Zhu, J.-Y. Yao, L. Sweet, M. Easton, J. Taylor, P. Robinson, N. Parson, Influences of nickel and vanadium impurities on microstructure of aluminum alloys. JOM 65(5), 584 (2013)

    Article  CAS  Google Scholar 

  20. J. Sun, F. Wang, Y. Liu, L. Guo, H. Wang, The effect of V on the morphology of TiB2 particles in as-cast aluminum composites. Int. J. Mater. Res. 112(11), 890 (2021)

    Article  CAS  Google Scholar 

  21. J. Lai, C. Shi, X.-G. Chen, Effects of V addition on recrystallization resistance of 7150 aluminum alloy after simulative hot deformation. Mater. Charact. 96, 126 (2014)

    Article  CAS  Google Scholar 

  22. E. Ghasali, A.H. Pakseresht, M. Alizadeh, K. Shirvanimoghaddam, T. Ebadzadeh, Vanadium carbide reinforced aluminum matrix composite prepared by conventional, microwave and spark plasma sintering. J. Alloy. Compd. 688, 527 (2016)

    Article  CAS  Google Scholar 

  23. G.L. Beausoleil, M.E. Parry, K. Mondal, S. Kwon, L.R. Gomez-Hurtado, D. Kaoumi, J.A. Aguiar, Spark plasma sintered, MoNbTi-based multi-principal element alloys with Cr, V, and Zr. J. Alloy. Compd. 927, 167083 (2022)

    Article  CAS  Google Scholar 

  24. Q. Zhang, W. Zhang, Y. Liu, B. Guo, Cyclic compressive creep-elastoplastic behaviors of in situ TiB2/Al-reinforced composite. Mater. Sci. Eng. A 666, 1 (2016)

    Article  CAS  Google Scholar 

  25. A. Khaliq, A.S. Alghamdi, W. Rajhi, T. Subhani, M. Ramadan, K.S.A. Halim, M. Qian, Thermodynamic and kinetic analyses of the removal of impurity titanium and vanadium from molten aluminum for electrical conductor applications. Metall. Mater. Trans. B 52(5), 3130 (2021)

    Article  CAS  Google Scholar 

  26. J. Geng, T. Hong, Y. Shen, G. Liu, C. **a, D. Chen, M. Wang, H. Wang, Microstructural stability of in-situ TiB2/Al composite during solution treatment. Mater. Charact. 124, 50 (2017)

    Article  CAS  Google Scholar 

  27. Q. Gao, S. Wu, S. Lü, X. **ong, R. Du, P. An, Effects of ultrasonic vibration treatment on particles distribution of TiB2 particles reinforced aluminum composites. Mater. Sci. Eng. A 680, 437 (2017)

    Article  CAS  Google Scholar 

  28. S. Mozammil, J. Karloopia, R. Verma, P.K. Jha, Effect of varying TiB2 reinforcement and its ageing behaviour on tensile and hardness properties of in-situ Al-4.5%Cu-xTiB2 composite. J. Alloy. Compd. 793, 454 (2019)

    Article  CAS  Google Scholar 

  29. W. Tian, P. Li, X. Liu, Morphology stability of Al3BC phase in aluminum alloys. J. Alloy. Compd. 583, 329 (2014)

    Article  CAS  Google Scholar 

  30. A.M.A. Mohamed, A.M. Samuel, F.H. Samuel, H.W. Doty, Influence of additives on the microstructure and tensile properties of near-eutectic Al–10.8%Si cast alloy. Mater. Des. 30(10), 3943 (2009)

    Article  CAS  Google Scholar 

  31. H. Mao, C. Li, Y. Dong, Y. Wang, H. Xu, Q. Yu, Y. Shang, X. Li, Z. Zhao, The effect of Mn on particles morphology and property of 5 wt% TiB2/Al-4.5Cu-0.4Mn alloys. J. Alloy. Compd. 904, 163907 (2022)

    Article  CAS  Google Scholar 

  32. B.-X. Dong, H.-Y. Yang, F. Qiu, Q. Li, S.-L. Shu, B.-Q. Zhang, Q.-C. Jiang, Design of TiC nanoparticles and their morphology manipulating mechanisms by stoichiometric ratios: experiment and first-principle calculation. Mater. Des. 181, 107951 (2019)

    Article  CAS  Google Scholar 

  33. G. Liu, K. Chen, H. Zhou, J. Tian, C. Pereira, J.M.F. Ferreira, Fast shape evolution of TiN microcrystals in combustion synthesis. Cryst. Growth Des. 6(10), 2404 (2006)

    Article  CAS  Google Scholar 

  34. C.S. Ramesh, S. Pramod, R. Keshavamurthy, A study on microstructure and mechanical properties of Al 6061–TiB2 in-situ composites. Mater. Sci. Eng. A 528(12), 4125 (2011)

    Article  Google Scholar 

  35. L. Chen, H.-Y. Wang, D. Luo, H.-Y. Zhang, B. Liu, Q.-C. Jiang, Synthesis of octahedron and truncated octahedron primary Mg2Si by controlling the Sb contents. CrystEngComm 15(9), 1787 (2013)

    Article  CAS  Google Scholar 

  36. N. Kubota, J.W. Mullin, A kinetic model for crystal growth from aqueous solution in the presence of impurity. J. Cryst. Growth 152(3), 203 (1995)

    Article  CAS  Google Scholar 

  37. A. Majumder, Z.K. Nagy, Prediction and control of crystal shape distribution in the presence of crystal growth modifiers. Chem. Eng. Sci. 101, 593 (2013)

    Article  CAS  Google Scholar 

  38. Z. Zhuo, H. Mao, H. Xu, Y. Fu, Density functional theory study of Al/NbB2 heterogeneous nucleation interface. Appl. Surf. Sci. 456, 37 (2018)

    Article  CAS  Google Scholar 

  39. Q. Wang, C. Liu, R. Yao, H. Zhu, X. Liu, M. Wang, Z. Chen, H. Wang, First-principles study on the stability and work function of low-index surfaces of TiB2. Comput. Mater. Sci. 172, 109356 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was financially funded by the National Natural Science Foundation of China (51775521); the Natural Science Foundation of Shanxi Province (202103021224179); Shanxi Province Key Research and Development Program International Science and Technology Cooperation Project (201903D421080); Shanxi Province Higher Education Science and Technology Innovation Project (2020L0319).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Xu or Hongkui Mao.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Xu, H., Mao, H. et al. The effect of V on the morphology transformation of TiB2 particles in Al-4.5Cu-0.18 V matrix. Journal of Materials Research 38, 1377–1385 (2023). https://doi.org/10.1557/s43578-023-00896-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00896-z

Keywords

Navigation