Log in

Zeolite incorporated iron oxide nanoparticle composites for enhanced congo red dye removal

  • Article
  • FOCUS ISSUE: Mössbauer Spectroscopy from Artificial Nano Architectures to Environmental Applications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Rational design of efficient material for dye removal is one of the most potential techniques to waste water management. Herein, the synergistic effect of the zeolite and iron oxide composites synthesized by adding 0.1, 0.2 and 0.3 g of zeolite during the nucleation of magnetite were explored. The crystal structures analyzed by XRD were compared with the local structure obtained from Mössbauer spectroscopy. The coexistence of goethite (α-FeOOH) in the prepared composites were observed from XRD and Mössbauer spectroscopy at higher content of zeolite (i.e. 0.2 and 0.3 g). The mechanism on the nucleation of α-FeOOH and its potential contribution in the removal of congo red dye is also highlighted. The removal percentage of the congo red dye is found to be as high as ~ 99%. The mechanism of the dye removal is also discussed. Moreover, the composites with zeolite have higher efficiency in the dye removal when the reusability test were performed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available upon reasonable request from the corresponding author.

References

  1. M. Ramesh, M.P.C. Rao, S. Anandan, H. Nagaraja, Adsorption and photocatalytic properties of NiO nanoparticles synthesized via a thermal decomposition process. J. Mater. Res. 33, 601–610 (2018). https://doi.org/10.1557/jmr.2018.30

    Article  CAS  Google Scholar 

  2. V. Selvaraj, T. Swarna Karthika, C. Mansiya, M. Alagar, An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. J. Mol. Struct. 1224, 129195 (2021). https://doi.org/10.1016/j.molstruc.2020.129195

    Article  CAS  Google Scholar 

  3. Q. Liu, Pollution and treatment of dye waste-water. IOP Conf. Ser. Earth Environ. Sci. (2020). https://doi.org/10.1088/1755-1315/514/5/052001

    Article  Google Scholar 

  4. M. Marcucci, G. Nosenzo, G. Capannelli, I. Ciabatti, D. Corrieri, G. Ciardelli, Treatment and reuse of textile effluents based on new ultrafiltration and other membrane technologies. Desalination 138, 75–82 (2001). https://doi.org/10.1016/S0011-9164(01)00247-8

    Article  CAS  Google Scholar 

  5. N.J. Singh, B. Wareppam, S. Ghosh, B.P. Sahu, P.K. AjiKumar, H.P. Singh, S. Chakraborty, S.S. Pati, A.C. Oliveira, S. Barg, V.K. Garg, L.H. Singh, Alkali-cation-incorporated and functionalized iron oxide nanoparticles for methyl blue removal/decomposition. Nanotechnology 31, 425703 (2020). https://doi.org/10.1088/1361-6528/ab9af1

    Article  CAS  Google Scholar 

  6. W. Chen, X. Yang, J. Huang, Y. Zhu, Y. Zhou, Y. Yao, C. Li, Iron oxide containing graphene/carbon nanotube based carbon aerogel as an efficient E-Fenton cathode for the degradation of methyl blue. Electrochim. Acta. 200, 75–83 (2016). https://doi.org/10.1016/j.electacta.2016.03.044

    Article  CAS  Google Scholar 

  7. V. Jawale, G. Gugale, M. Chaskar, S. Pandit, R. Pawar, S. Suryawanshi, V. Pandit, G. Umarji, S. Arbuj, Two- and three-dimensional zinc oxide nanostructures and its photocatalytic dye degradation performance study. J. Mater. Res. 36, 1573–1583 (2021). https://doi.org/10.1557/s43578-021-00174-w

    Article  CAS  Google Scholar 

  8. A. Lassoued, M.S. Lassoued, B. Dkhil, S. Ammar, A. Gadri, Photocatalytic degradation of methylene blue dye by iron oxide (α-Fe2O3) nanoparticles under visible irradiation. J. Mater. Sci. Mater. Electron. 29, 8142–8152 (2018). https://doi.org/10.1007/s10854-018-8819-4

    Article  CAS  Google Scholar 

  9. B. Fahmy, S.A. Cormier, Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol. Vitr. 23, 1365–1371 (2009). https://doi.org/10.1016/j.tiv.2009.08.005

    Article  CAS  Google Scholar 

  10. C. Santhosh, A. Malathi, E. Dhaneshvar, A. Bhatnagar, A.N. Grace, J. Madhavan, Iron Oxide Nanomaterials for Water Purification (Elsevier, Amsterdam, 2018)

    Google Scholar 

  11. L. Giraldo, A. Erto, J.C. Moreno-Piraján, Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization. Adsorption 19, 465–474 (2013). https://doi.org/10.1007/s10450-012-9468-1

    Article  CAS  Google Scholar 

  12. E. Alver, A. Metin, Anionic dye removal from aqueous solutions using modified zeolite: adsorption kinetics and isotherm studies. Chem. Eng. J. 200–202, 59–67 (2012). https://doi.org/10.1016/j.cej.2012.06.038

    Article  CAS  Google Scholar 

  13. J. Kumar, S. Kumar, M. Mishra, H. Sahoo, Amine functionalized magnetic iron oxide nanoparticles: synthesis, antibacterial activity and rapid removal of congo red dye amine functionalized magnetic iron oxide nanoparticles: synthesis, antibacterial activity and rapid removal of Congo red dye. J. Mol. Liq. (2019). https://doi.org/10.1016/j.molliq.2019.03.033

    Article  Google Scholar 

  14. A. Corma, H. Garcia, Zeolite-based photocatalysts. Chem. Commun. (2004). https://doi.org/10.1039/b400147h

    Article  Google Scholar 

  15. A.V. Cvetkov, S.E. Gango, M.S. Ivanova, S.D. Khanin, A.E. Lukin, V.G. Solovyev, S.V. Trifonov, V.L. Veisman, Electrical and optical properties of iodide nanoparticles embedded into zeolite porous matrices. J. Phys. Conf. Ser. 929, 012042 (2017). https://doi.org/10.1088/1742-6596/929/1/012042

    Article  CAS  Google Scholar 

  16. T. Armbruster, M.E. Gunter, Crystal structures of natural zeolites. Rev. Miner. Geochem. 45, 1–67 (2001). https://doi.org/10.2138/rmg.2001.45.1

    Article  CAS  Google Scholar 

  17. A. Farkaš, M. Rožić, Ž Barbarić-Mikočević, Ammonium exchange in leakage waters of waste dumps using natural zeolite from the Krapina region, Croatia. J. Hazard. Mater. 117, 25–33 (2005). https://doi.org/10.1016/j.jhazmat.2004.05.035

    Article  CAS  Google Scholar 

  18. L. Herojit singh, R. Govindaraj, G. Amarendra, C.S. Sundar, Local structure and magnetic properties of cubic iron oxide nanoparticles formed in zeolite as deduced using Mössbauer spectroscopy. Appl. Phys. Lett. 103, 193104 (2013). https://doi.org/10.1063/1.4828498

    Article  CAS  Google Scholar 

  19. S.L. Lawton, A.S. Fung, G.J. Kennedy, L.B. Alemany, C.D. Chang, G.H. Hatzikos, D.N. Lissy, M.K. Rubin, H.C. Timken, S. Steuernagel, D.E. Woessner, Zeolite MCM-49: a three-dimensional MCM-22 analogue synthesized by in situ crystallization. J. Phys. Chem. 100, 3788–3798 (1996). https://doi.org/10.1021/jp952871e

    Article  CAS  Google Scholar 

  20. L.H. Singh, S.S. Pati, J.A.H. Coaquira, J. Matilla, E.M. Guimarães, A.C. Oliveira, E. Kuzmann, V.K. Garg, Magnetic interactions in cubic iron oxide magnetic nanoparticle bound to zeolite. J. Magn. Magn. Mater. 416, 98–102 (2016). https://doi.org/10.1016/j.jmmm.2016.05.003

    Article  CAS  Google Scholar 

  21. A.M. Habrowska, E.S. Popiel, Positron annihilation in zeolite 13X. J. Appl. Phys. 62, 2419–2423 (1987). https://doi.org/10.1063/1.339475

    Article  CAS  Google Scholar 

  22. K.C. Hass, W.F. Schneider, Reliability of small cluster models for Cu-exchanged zeolites. J. Phys. Chem. 100, 9292–9301 (1996). https://doi.org/10.1021/jp952702u

    Article  CAS  Google Scholar 

  23. W. Mozgawa, M. Król, K. Barczyk, FT-IR studies of zeolites from different structural groups. Chemik. 65, 671–674 (2011)

    Google Scholar 

  24. K. Byrappa, B.V.S. Kumar, Characterization of zeolites by infrared spectroscopy. Asian J. Chem. 19, 4933–4935 (2007)

    CAS  Google Scholar 

  25. M. Mahdavi, M. BinAhmad, M.J. Haron, Y. Gharayebi, K. Shameli, B. Nadi, Fabrication and characterization of SiO2/(3-aminopropyl)triethoxysilane-coated magnetite nanoparticles for lead(II) removal from aqueous solution. J. Inorg. Organomet. Polym. Mater. 23, 599–607 (2013). https://doi.org/10.1007/s10904-013-9820-2

    Article  CAS  Google Scholar 

  26. J.-F. Boily, J. Szanyi, A.R. Felmy, A combined FTIR and TPD study on the bulk and surface dehydroxylation and decarbonation of synthetic goethite. Geochim. Cosmochim. Acta. 70, 3613–3624 (2006). https://doi.org/10.1016/j.gca.2006.05.013

    Article  CAS  Google Scholar 

  27. M. Ristić, S. Krehula, M. Reissner, S. Musić, 57Fe Mössbauer, XRD, FT-IR, FE SEM analyses of natural goethite, hematite and siderite. Croat. Chem. Acta. 90, 499–507 (2017). https://doi.org/10.5562/cca3233

    Article  CAS  Google Scholar 

  28. S.S. Pati, L. Herojit Singh, J.C. MantillaOchoa, E.M. Guimarãesa, M.J.A. Sales, J.A.H. Coaquira, A.C. Oliveira, V.K. Garg, Facile approach to suppress γ-Fe2O3 to α-Fe2O3 phase transition beyond 600 °C in Fe3O4 nanoparticles. Mater. Res. Express. 2, 45003 (2015). https://doi.org/10.1088/2053-1591/2/4/045003

    Article  CAS  Google Scholar 

  29. Z. Surowiec, A. Miaskowski, M. Budzyński, Investigation of magnetite Fe3O4 nanoparticles for magnetic hyperthermia. Nukleonika 62, 183–186 (2017). https://doi.org/10.1515/nuka-2017-0028

    Article  CAS  Google Scholar 

  30. L.H. Singh, R. Govindaraj, R. Mythili, G. Amarendra, C.S. Sundar, Atomic scale study of thermal reduction of nano goethite coexisting with magnetite. AIP Adv. 3, 022101 (2013). https://doi.org/10.1063/1.4790614

    Article  CAS  Google Scholar 

  31. U. Schwertmann, E. Murad, Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner. 31, 277–284 (1983). https://doi.org/10.1346/CCMN.1983.0310405

    Article  CAS  Google Scholar 

  32. J. Wang, G. Liu, T. Li, C. Zhou, Physicochemical studies toward the removal of Zn(II) and Pb(II) ions through adsorption on montmorillonite-supported zero-valent iron nanoparticles. RSC Adv. 5, 29859–29871 (2015). https://doi.org/10.1039/C5RA02108A

    Article  CAS  Google Scholar 

  33. Y. An, H. Zheng, Z. Yu, Y. Sun, Y. Wang, C. Zhao, Functioned hollow glass microsphere as a self-floating adsorbent: rapid and high-efficient removal of anionic dye. J. Hazard. Mater. 381, 120971 (2020). https://doi.org/10.1016/j.jhazmat.2019.120971

    Article  CAS  Google Scholar 

  34. M. Doan, Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. J. Hazard. Mater. 109, 141–148 (2004). https://doi.org/10.1016/j.jhazmat.2004.03.003

    Article  CAS  Google Scholar 

  35. K. Litefti, M.S. Freire, M. Stitou, J. González-Álvarez, Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark. Sci. Rep. 9, 1–11 (2019). https://doi.org/10.1038/s41598-019-53046-z

    Article  CAS  Google Scholar 

  36. A. Özcan, Ç. Ömeroğlu, Y. Erdoğan, A.S. Özcan, Modification of bentonite with a cationic surfactant: an adsorption study of textile dye reactive blue 19. J. Hazard. Mater. 140, 173–179 (2007). https://doi.org/10.1016/j.jhazmat.2006.06.138

    Article  CAS  Google Scholar 

  37. E.L. Zhang, X.J. Sun, X.T. Liu, Q.D. Wang, Morphology controlled synthesis of α-FeOOH crystals and their shape-dependent adsorption for decontamination of Congo red dye. Mater. Res. Innov. 19, 385–391 (2015). https://doi.org/10.1179/1433075X15Y.0000000019

    Article  CAS  Google Scholar 

  38. B. Wareppam, N.J. Singh, S. Chakraborty, N. Aomoa, M. Kakati, A.C. de Oliveira, V.K. Garg, K.P. Singh, S. Barg, S. Ghosh, L.H. Singh, Unused to useful: recycling plasma chamber coated waste composite of ZnO and α-Fe2O3 into an active material for sustainable waste-water treatment. Chem. Eng. J. Adv. 7, 100120 (2021). https://doi.org/10.1016/j.ceja.2021.100120

    Article  CAS  Google Scholar 

  39. V. Leandri, J.M. Gardner, M. Jonsson, Coumarin as a quantitative probe for hydroxyl radical formation in heterogeneous photocatalysis. J. Phys. Chem. C. 123, 6667–6674 (2019). https://doi.org/10.1021/acs.jpcc.9b00337

    Article  CAS  Google Scholar 

  40. C. BurgosCastilloRutely, J.M. Fontmorin, Z. TangWalter, D.B. Xochitl, S. Mika, Towards reliable quantification of hydroxyl radicals in the Fenton reaction using chemical probes. RSC Adv. 8, 5321–5330 (2018). https://doi.org/10.1039/c7ra13209c

    Article  CAS  Google Scholar 

  41. X. Liang, L. Zhao, Room-temperature synthesis of air-stable cobalt nanoparticles and their highly efficient adsorption ability for Congo red. RSC Adv. 2, 5485–5487 (2012). https://doi.org/10.1039/c2ra20240a

    Article  CAS  Google Scholar 

  42. S.H. Kim, P.P. Choi, Enhanced Congo red dye removal from aqueous solutions using iron nanoparticles: adsorption, kinetics, and equilibrium studies. Dalt. Trans. 46, 15470–15479 (2017). https://doi.org/10.1039/c7dt02076g

    Article  CAS  Google Scholar 

  43. H.S. Al-Shehri, E. Almudaifer, A.Q. Alorabi, H.S. Alanazi, A.S. Alkorbi, F.A. Alharthi, Effective adsorption of crystal violet from aqueous solutions with effective adsorbent: equilibrium, mechanism studies and modeling analysis. Environ. Pollut. Bioavail. 33, 214–226 (2021). https://doi.org/10.1080/26395940.2021.1960199

    Article  CAS  Google Scholar 

  44. A. Leudjo Taka, E. Fosso-Kankeu, K. Pillay, X. Yangkou Mbianda, Metal nanoparticles decorated phosphorylated carbon nanotube/cyclodextrin nanosponge for trichloroethylene and Congo red dye adsorption from wastewater. J. Environ. Chem. Eng. 8, 103602 (2020). https://doi.org/10.1016/j.jece.2019.103602

    Article  CAS  Google Scholar 

  45. S. Yang, L. Wang, X. Zhang, W. Yang, G. Song, Enhanced adsorption of Congo red dye by functionalized carbon nanotube/mixed metal oxides nanocomposites derived from layered double hydroxide precursor. Chem. Eng. J. 275, 315–321 (2015). https://doi.org/10.1016/j.cej.2015.04.049

    Article  CAS  Google Scholar 

  46. N. Taufiqurrahmi, A.R. Mohamed, S. Bhatia, Nanocrystalline zeolite Y: synthesis and characterization. IOP Conf. Ser. Mater. Sci. Eng. 17, 012030 (2011). https://doi.org/10.1088/1757-899X/17/1/012030

    Article  CAS  Google Scholar 

  47. Y. Cui, J. Chen, K. Huang, C. Du, J. Wu, A.P. Baker, X. Zhang, Na-X zeolite templated and sulfur-impregnated porous carbon as the cathode for a high-performance Li–S battery. RSC Adv. 6, 9117–9123 (2016). https://doi.org/10.1039/C5RA22992H

    Article  CAS  Google Scholar 

  48. X. Huo, Y. Zhang, J. Zhang, P. Zhou, R. **e, C. Wei, Y. Liu, N. Wang, Selective adsorption of anionic dyes from aqueous solution by nickel(II) oxide. J. Water Supply Res. Technol. 68, 171–186 (2019). https://doi.org/10.2166/aqua.2019.115

    Article  Google Scholar 

  49. H. Zhang, Q. Chang, Y. Jiang, H. Li, Y. Yang, Synthesis of KMnO4 -treated magnetic graphene oxide nanocomposite (Fe3O4 @GO/MnOx) and its application for removing of Cu2+ ions from aqueous solution. Nanotechnology 29, 135706 (2018). https://doi.org/10.1088/1361-6528/aaaa2f

    Article  CAS  Google Scholar 

  50. B. Priyadarshini, T. Patra, T.R. Sahoo, An efficient and comparative adsorption of Congo red and Trypan blue dyes on MgO nanoparticles: kinetics, thermodynamics and isotherm studies. J. Magn. Alloy. 9, 478–488 (2021). https://doi.org/10.1016/j.jma.2020.09.004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author L. Herojit Singh thanks DST-SERB for the financial support under the project file no. EMR/2016/00152 and CRG/2021/001611, the author N. Joseph thanks DST-INSPIRE for providing the fellowship. The authors thank Department of Chemistry, NIT Manipur for the XRD and FTIR measurements. The authors thank Amit Garg for the English proof reading.

Author information

Authors and Affiliations

Authors

Contributions

NJS: Investigation, Validation, Formal analysis, Writing – Original Draft. BW: Investigation, Validation, Formal analysis, Writing. KPS: Investigation, Formal analysis, Review. AK: Investigation. ACO and VKG: Investigation, Formal analysis, Writing- Review & Editing. LHS: Funding acquisition, supervision, conceptualization, project administration, Writing- Review & Editing.

Corresponding author

Correspondence to L. Herojit Singh.

Ethics declarations

Conflict of interest

There are no conflicts of interest declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2357 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N.J., Wareppam, B., Kumar, A. et al. Zeolite incorporated iron oxide nanoparticle composites for enhanced congo red dye removal. Journal of Materials Research 38, 1149–1161 (2023). https://doi.org/10.1557/s43578-022-00859-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00859-w

Keywords

Navigation