Log in

Optimization of TiO2 coatings properties and photochemical Ag-functionalization: Implications on bioactivity and antibacterial activity

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Titanium-based implants are widely used in implant manufacture. However, the low bone-implant contact and infections are still potential complications. To pursue the development of nanotubular TiO2 coatings that present suitable characteristics for biomedical application, synthesis variables, and Ag-functionalization were explored. TiO2 coatings were grown over Ticp and Ti6Al4V by potentiostatic anodization (25 V, 90 min, 25 °C), being investigated the substrate, %wt NH4F, electrolyte stirring, and annealing effect on biocompatibility and antimicrobial performance. Samples were characterized by FE-SEM, XDR, and contact angle. The results show that morphology and microstructure are very sensitive to these experimental parameters. Stirring was related to an aggressive dissolution. Static condition can be used to grow nanotubes and enhance anatase stabilization, wettability, and apatite epitaxy. The optimized condition was achieved with annealed 0.75-%wt NH4F, without stirring. This condition was photochemically Ag-functionalized in 0.25/0.5 M of AgNO3 and the results demonstrated an increase in the antimicrobial activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

Data will made available on reasonable request.

Code availability

Not applicable.

Consent for publication

Not applicable.

References

  1. S. Bhat, A. Kumar, Biomaterials and bioengineering tomorrow’s healthcare. Biomatter 3, e24717 (2013). https://doi.org/10.4161/BIOM.24717

    Article  Google Scholar 

  2. A.G. Rincón, C. Pulgarin, Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time. Appl. Catal. B 49, 99–112 (2004). https://doi.org/10.1016/J.APCATB.2003.11.013

    Article  Google Scholar 

  3. D. Khudhair, A. Bhatti, Y. Li et al., Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations. Mater. Sci. Eng. C 59, 1125–1142 (2016). https://doi.org/10.1016/j.msec.2015.10.042

    Article  CAS  Google Scholar 

  4. J.S. Santos, P.D.S. Araújo, Y.B. Pissolitto et al., The use of anodic oxides in practical and sustainable devices for energy conversion and storage. Materials 14, 1–38 (2021). https://doi.org/10.3390/ma14020383

    Article  CAS  Google Scholar 

  5. M. Motola, J. Capek, R. Zazpe et al., Thin TiO2 coatings by ALD enhance the cell growth on TiO2 nanotubular and flat substrates. ACS Appl. Bio Mater. 3, 6447–6456 (2020). https://doi.org/10.1021/acsabm.0c00871

    Article  CAS  Google Scholar 

  6. M. Hasegawa, J. Saruta, M. Hirota et al., A newly created meso-, micro-, and nano-scale rough titanium surface promotes bone-implant integration. Int. J. Mol. Sci. 21, 783 (2020). https://doi.org/10.3390/ijms21030783

    Article  CAS  Google Scholar 

  7. H. Wang, J. **ong, X. Cheng et al., Hydrogen–nitrogen plasma assisted synthesis of titanium dioxide with enhanced performance as anode for sodium ion batteries. Sci. Rep. 101(10), 1–12 (2020). https://doi.org/10.1038/s41598-020-68838-x

    Article  CAS  Google Scholar 

  8. K. Liu, M. Cao, A. Fujishima, L. Jiang, Bio-inspired titanium dioxide materials with special wettability and their applications. Chem. Rev. 114, 10044–10094 (2014). https://doi.org/10.1021/cr4006796

    Article  CAS  Google Scholar 

  9. D. Regonini, C.R. Bowen, A. Jaroenworaluck, R. Stevens, A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater. Sci. Eng. R 74, 377–406 (2013). https://doi.org/10.1016/j.mser.2013.10.001

    Article  Google Scholar 

  10. P. Branemark, B. Hansson, R. Adell et al, Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand. J. Plast. Reconstr. Surg. (1977)

  11. S. Oh, K.S. Brammer, Y.S.J. Li et al., Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. 106, 2130–2135 (2009). https://doi.org/10.1063/1.1491411

    Article  CAS  Google Scholar 

  12. S. Saha, R. Kumar, K. Pramanik, A. Biswas, Interaction of osteoblast -TiO2 nanotubes in vitro: the combinatorial effect of surface topography and other physico-chemical factors governs the cell fate. Appl. Surf. Sci. 449, 1–14 (2018). https://doi.org/10.1016/j.apsusc.2018.01.160

    Article  CAS  Google Scholar 

  13. N. Kommerein, S.N. Stumpp, M. Musken et al., An oral multispecies biofilm model for high content screening applications. PLoS ONE 12, 1–21 (2017). https://doi.org/10.1371/journal.pone.0173973

    Article  CAS  Google Scholar 

  14. W. Feng, Z. Geng, Z. Li et al., Controlled release behaviour and antibacterial effects of antibiotic-loaded titania nanotubes. Mater. Sci. Eng. C 62, 105–112 (2016). https://doi.org/10.1016/j.msec.2016.01.046

    Article  CAS  Google Scholar 

  15. M.F. Kunrath, R. Hubler, R.S.A. Shinkai, E.R. Teixeira, Application of TiO2 nanotubes as a drug delivery system for biomedical implants: a critical overview. ChemSelect 3, 11180–11189 (2018). https://doi.org/10.1002/slct.201801459

    Article  CAS  Google Scholar 

  16. K. Gulati, M. Kogawa, M. Prideaux et al., Drug-releasing nano-engineered titanium implants: therapeutic efficacy in 3D cell culture model, controlled release and stability. Mater. Sci. Eng. C 69, 831–840 (2016). https://doi.org/10.1016/j.msec.2016.07.047

    Article  CAS  Google Scholar 

  17. A.M. Schrand, M.F. Rahman, S.M. Hussain et al., Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip. Rev. 2, 544–568 (2010). https://doi.org/10.1002/WNAN.103

    Article  CAS  Google Scholar 

  18. A. Kubacka, M. Ferrer, M. Fernández-García et al., Tailoring polymer–TiO2 film properties by presence of metal (Ag, Cu, Zn) species: optimization of antimicrobial properties. Appl. Catal. B 104, 346–352 (2011). https://doi.org/10.1016/J.APCATB.2011.01.046

    Article  CAS  Google Scholar 

  19. C.M. Crisan, T. Mocan, M. Manolea et al., Review on silver nanoparticles as a novel class of antibacterial solutions. Appl. Sci. 11, 1120 (2021). https://doi.org/10.3390/APP11031120

    Article  CAS  Google Scholar 

  20. Y. Tao, T. Aparicio, M. Li et al., Inhibition of DNA replication initiation by silver nanoclusters. Nucleic Acids Res. 49, 5074–5083 (2021). https://doi.org/10.1093/NAR/GKAB271

    Article  CAS  Google Scholar 

  21. A.P. Simon, V.A.Q. Santos, A. Rodrigues et al., Enhancement of mechanical properties and wettability of TiO2NT arrays formed in SBF-based electrolyte. Adv. Eng. Mater. 21, 1900813(1)-1900813(4) (2019). https://doi.org/10.1002/adem.201900813

    Article  CAS  Google Scholar 

  22. C. Cao, G. Zhang, J. Ye et al., Current vs time curve analysis for the anodic preparation of titania nanotube arrays. ECS J. Solid State Sci. Technol. 4, N151–N156 (2015). https://doi.org/10.1149/2.0161512jss

    Article  CAS  Google Scholar 

  23. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, C. Instrumentation, NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012)

    Article  CAS  Google Scholar 

  24. T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915 (2006)

    Article  CAS  Google Scholar 

  25. Z. Guo, C. Chen, Q. Gao et al., Fabrication of silver-incorporated TiO2 nanotubes and evaluation on its antibacterial activity. Mater. Lett. 137, 464–467 (2014). https://doi.org/10.1016/j.matlet.2014.09.081

    Article  CAS  Google Scholar 

  26. A.P. Simon, C.H. Ferreira, V.A.Q. Santos et al., Multi-step cefazolin sodium release from bioactive TiO2 nanotubes: surface and polymer coverage effects. J. Mater. Res. 36, 1–14 (2021). https://doi.org/10.1557/s43578-021-00202-9

    Article  CAS  Google Scholar 

  27. P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50, 2904–2939 (2011). https://doi.org/10.1002/anie.201001374

    Article  CAS  Google Scholar 

  28. M.M. Lohrengel, Thin anodic oxide layers on aluminium and other valve metals: high field regime. Mater. Sci. Eng. R 11, 243–294 (1993)

    Article  Google Scholar 

  29. H. Habazaki, K. Fushimi, K. Shimizu et al., Fast migration of fluoride ions in growing anodic titanium oxide. Electrochem. Commun. 9, 1222–1227 (2007)

    Article  CAS  Google Scholar 

  30. J.S. Santos, M. Fereidooni, V. Marquez et al., Single-step fabrication of highly stable amorphous TiO2 nanotubes arrays (am-TNTA) for stimulating gas-phase photoreduction of CO2 to methane. Chemosphere 289, 133170 (2022). https://doi.org/10.1016/j.chemosphere.2021.133170

    Article  CAS  Google Scholar 

  31. J.M. Macak, H. Tsuchiya, L. Taveira et al., Smooth anodic TiO2 nanotubes. Angew. Chem. Int. Ed. 44, 7463–7465 (2005). https://doi.org/10.1002/anie.200502781

    Article  CAS  Google Scholar 

  32. A.P. Simon, A. Rodrigues, J.S. Santos et al., TiO2NTs bio-inspired coatings: revisiting electrochemical, morphological, structural, and mechanical properties. Nanotechnology 33, 1–11 (2022). https://doi.org/10.1088/1361-6528/ac2b6b

    Article  CAS  Google Scholar 

  33. H. Tsuchiya, J.M. Macak, L. Taveira et al., Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes. Electrochem. Commun. 7, 576–580 (2005)

    Article  CAS  Google Scholar 

  34. K. Yasuda, P. Schmuki, Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. Electrochim. Acta 52, 4053–4061 (2007). https://doi.org/10.1016/j.electacta.2006.11.023

    Article  CAS  Google Scholar 

  35. D.J. LeClere, A. Velota, P. Skeldon et al., Tracer investigation of pore formation in anodic titania. J. Electrochem. Soc. 155, C487 (2008). https://doi.org/10.1149/1.2946727

    Article  CAS  Google Scholar 

  36. K.R. Shin, Y.S. Kim, J.H. Jeong et al., Pore size effect on cell response via plasma electrolytic oxidation. Surf. Eng. 32, 418–422 (2016). https://doi.org/10.1179/1743294415Y.0000000026

    Article  CAS  Google Scholar 

  37. F. Wang, C. Li, S. Zhang, H. Liu, Role of TiO2 nanotubes on the surface of implants in osseointegration in animal models: a systematic review and meta-analysis. J. Prosthodont. 29, 501–510 (2020). https://doi.org/10.1111/jopr.13163

    Article  Google Scholar 

  38. E.P. Su, D.F. Justin, C.R. Pratt et al., Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces. Bone Joint J. 100, 9–16 (2018). https://doi.org/10.1302/0301-620X.100B1.BJJ-2017-0551.R1

    Article  Google Scholar 

  39. A. Mazare, G. Totea, C. Burnei et al., Corrosion, antibacterial activity and haemocompatibility of TiO2 nanotubes as a function of their annealing temperature. Corros. Sci. 103, 215–222 (2016). https://doi.org/10.1016/j.corsci.2015.11.021

    Article  CAS  Google Scholar 

  40. J.S. Suwandi, R.E.M. Toes, T. Nikolic, B.O. Roep, Inducing tissue specific tolerance in autoimmune disease with tolerogenic dendritic cells. Clin. Exp. Rheumatol. 33, 97–103 (2015). https://doi.org/10.1002/jbm.a

    Article  Google Scholar 

  41. L.N. Wang, M. **, Y. Zheng et al., Nanotubular surface modification of metallic implants via electrochemical anodization technique. Int. J. Nanomed. 9, 4421–4435 (2014). https://doi.org/10.2147/IJN.S65866

    Article  CAS  Google Scholar 

  42. M. Uchida, H.-M. Kim, T. Kokubo et al., Structural dependence of apatite formation on zirconia gels in a simulated body fluid. J. Ceram. Soc. Jpn. 110, 710–715 (2002). https://doi.org/10.2109/jcersj.110.710

    Article  CAS  Google Scholar 

  43. W. Wu, G.H. Nancollas, Kinetics of heterogeneous nucleation of calcium phosphates on anatase and rutile surfaces. J. Colloid Interface Sci. 199, 206–211 (1998)

    Article  CAS  Google Scholar 

  44. R. Narayanan, H.J. Lee, T.Y. Kwon, K.H. Kim, Anodic TiO2 nanotubes from stirred baths: hydroxyapatite growth & osteoblast responses. Mater. Chem. Phys. 125, 510–517 (2011). https://doi.org/10.1016/j.matchemphys.2010.10.024

    Article  CAS  Google Scholar 

  45. D.C. Rodrigues, P. Valderrama, T.G. Wilson et al., Titanium corrosion mechanisms in the oral environment: a retrieval study. Materials 6, 5258–5274 (2013). https://doi.org/10.3390/ma6115258

    Article  CAS  Google Scholar 

  46. D.A. Siddiqui, L. Guida, S. Sridhar et al., Evaluation of oral microbial corrosion on the surface degradation of dental implant materials. J. Periodontol. 90, 72–81 (2019). https://doi.org/10.1002/JPER.18-0110

    Article  CAS  Google Scholar 

  47. X. Wang, G. Wang, J. Liang et al., Staphylococcus aureus adhesion to different implant surface coatings: an in vitro study. Surf. Coat. Technol. 203, 3454–3458 (2009). https://doi.org/10.1016/j.surfcoat.2009.05.009

    Article  CAS  Google Scholar 

  48. C. Spengler, N. Thewes, P. Jung et al., Determination of the nano-scaled contact area of staphylococcal cells. Nanoscale 9, 10084–10093 (2017). https://doi.org/10.1039/C7NR02297B

    Article  CAS  Google Scholar 

  49. E. Maikranz, C. Spengler, N. Thewes et al., Different binding mechanisms of Staphylococcus aureus to hydrophobic and hydrophilic surfaces. Nanoscale 12, 19267–19275 (2020). https://doi.org/10.1039/D0NR03134H

    Article  CAS  Google Scholar 

  50. B. Reidy, A. Haase, A. Luch et al., Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6, 2295 (2013). https://doi.org/10.3390/MA6062295

    Article  CAS  Google Scholar 

  51. K.H. Cho, J.E. Park, T. Osaka, S.G. Park, The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 51, 956–960 (2005). https://doi.org/10.1016/j.electacta.2005.04.071

    Article  CAS  Google Scholar 

  52. O. Choi, K.K. Deng, N.J. Kim et al., The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 42, 3066–3074 (2008). https://doi.org/10.1016/j.watres.2008.02.021

    Article  CAS  Google Scholar 

  53. G. Habiboallah, Z. Mahdi, Z. Majid et al., Enhancement of gingival wound healing by local application of silver nanoparticles periodontal dressing following surgery: a histological assessment in animal model. Mod. Res. Inflamm. 2014, 128–138 (2014). https://doi.org/10.4236/MRI.2014.33016

    Article  Google Scholar 

  54. R.V. Chernozem, M.A. Surmeneva, B. Krause et al., Functionalization of titania nanotubes with electrophoretically deposited silver and calcium phosphate nanoparticles: structure, composition and antibacterial assay. Mater. Sci. Eng. C 97, 420–430 (2019). https://doi.org/10.1016/j.msec.2018.12.045

    Article  CAS  Google Scholar 

  55. Y. Liu, J. Strauss, T.A. Camesano, Thermodynamic investigation of Staphylococcus epidermidis interactions with protein-coated substrata. Langmuir 23, 7134–7142 (2007). https://doi.org/10.1021/la700575u

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to LNNano (CNPEM), LIEC-UFSCar, and the Analysis Center of UTFPR-PB.

Funding

This work was supported by UTFPR [PAPCDT 06/2016 and 07/2017].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana de Souza Sikora.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, A.P., de Lima, A.S., Santos, V.A.Q. et al. Optimization of TiO2 coatings properties and photochemical Ag-functionalization: Implications on bioactivity and antibacterial activity. Journal of Materials Research 37, 4243–4254 (2022). https://doi.org/10.1557/s43578-022-00790-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00790-0

Keywords

Navigation