Log in

The optimization of the groove depth height in friction stir welding of AA 6061-T6 with Al2O3 powder particle reinforcement

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The present work optimizes the groove size in the friction stir welding (FSW) of 6061-T6 aluminium alloy (AA) with Al2O3 powder particle reinforcement. Here the four cases are considered for the groove depth of 1 mm, 1.5 mm, 2 mm and 3 mm, and the groove width is 1 mm (for all cases) on each AA6061-T6 workpiece material. The COMSOL Multiphysics software was used to model the temperature rise during friction stir welding. In the experimental analysis, the optical micrograph (OM) and scanning electron microscope (SEM) analysis of the weld samples revealed that the powder particle agglomerate near the stir zone region and the Al2O3 powder are not homogeneously mixed with the aluminium matrix when the depth is too large. The maximum tensile strength and hardness were recorded on the weld samples when the groove depth was 2 mm.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The data presented in this article will be available from the corresponding author at a reasonable request.

References

  1. R. Rai, A. De, H.K.D.H. Bhadeshia, T. DebRoy, friction stir welding tools. Sci. Technol. Weld. Join. 16(4), 325 (2011). https://doi.org/10.1179/1362171811Y.0000000023

    Article  CAS  Google Scholar 

  2. R. Nandan, G.G. Roy, T.J. Lienert, T. Debroy, Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater. 55(3), 883 (2007). https://doi.org/10.1016/j.actamat.2006.09.009

    Article  CAS  Google Scholar 

  3. M.A.A. Anshari, M. Imam, M.Z.K. Yusufzai, V. Chinthapenta, R. Mishra, Stir zone anisotropic work hardening behavior in friction stir processed EN8 medium carbon steel. Mater. Sci. Eng. A 805, 140582 (2021). https://doi.org/10.1016/j.msea.2020.140582

    Article  CAS  Google Scholar 

  4. R. Kesharwani, K.K. Jha, C. Sarkar, M. Imam, Numerical and experimental analysis on friction stir welding of the dissimilar materials 6061–T6 AA and pure copper. Mater. Today: Proc. 65(8), 3132–3142 (2022). https://doi.org/10.1016/j.matpr.2022.05.353

    Article  CAS  Google Scholar 

  5. R. Kesharwani, M. Imam, C. Sarkar, Clarification on the choice of sheet positioning in friction stir welding of dissimilar materials. Manuf. Lett. 24, 100 (2020). https://doi.org/10.1016/j.mfglet.2020.04.008

    Article  Google Scholar 

  6. K.K. Jha, M.A.A. Ansari, Investigation on single/double pass friction stir processing techniques of nickel 200 alloy. Mater. Today: Proc. 56, 722–725 (2022). https://doi.org/10.1016/j.matpr.2022.01.320

    Article  CAS  Google Scholar 

  7. P. Xue, B.L. **ao, Z.Y. Ma, Achieving ultrafine-grained structure in a pure nickel by friction stir processing with additional cooling. Mater. Des. 56, 848 (2014). https://doi.org/10.1016/j.matdes.2013.12.001

    Article  CAS  Google Scholar 

  8. M.A.A. Anshari, D. Pandit, M. Imam, Friction stir processing as a strengthening technique for medium carbon low alloy steels. Mater. Today: Proc. 56, 862–867 (2022). https://doi.org/10.1016/j.matpr.2022.02.515

    Article  CAS  Google Scholar 

  9. K.K. Jha, R. Kesharwani, M. Imam, Microstructure and mechanical properties correlation of FSAM employed AA5083/AA7075 Joints. Trans. Indian Inst. Met. (2022). https://doi.org/10.1007/s12666-022-02672-9

    Article  Google Scholar 

  10. A. Garg, M. Raturi, A. Bhattacharya, Strength, failure and microstructure development for friction stir welded AA6061-T6 joints with different tool pin profiles. Cirp J. Manuf. Sci. Technol. 29, 99 (2020). https://doi.org/10.1016/j.cirpj.2020.03.001

    Article  Google Scholar 

  11. R. Kesharwani, M. Imam, C. Sarkar, Effect of flat probe on local heat generation and microstructural evolution in friction stir welding of 6061–T6 aluminium alloy. Trans. Indian Inst. Met. 74(12), 3185 (2021). https://doi.org/10.1007/s12666-021-02386-4

    Article  CAS  Google Scholar 

  12. M. Ilangovan, S.R. Boopathy, V. Balasubramanian, Effect of tool pin profile on microstructure and tensile properties of friction stir welded dissimilar AA 6061–AA 5086 aluminium alloy joints. Def. Technol. 11(2), 174 (2015). https://doi.org/10.1016/j.dt.2015.01.004

    Article  Google Scholar 

  13. K.K. Jha, R. Kesharwani, M. Imam, Microstructural and micro-hardness study on the fabricated Al 5083-O/6061-T6/7075-T6 gradient composite component via a novel route of friction stir additive manufacturing. Mater. Today: Proc. 56, 819–825 (2022). https://doi.org/10.1016/j.matpr.2022.02.262

    Article  CAS  Google Scholar 

  14. H.A. Derazkola, N. Kordani, H.A. Derazkola, Effects of friction stir welding tool tilt angle on properties of Al-Mg-Si alloy T-joint. Cirp. J. Manuf. Sci. Technol. 33, 264 (2021). https://doi.org/10.1016/j.cirpj.2021.03.015

    Article  Google Scholar 

  15. K.P. Mehta, V.J. Badheka, Influence of tool design and process parameters on dissimilar friction stir welding of copper to AA6061-T651 joints. Int. J. Adv. Manuf. Techn. 80(9), 2073 (2015). https://doi.org/10.1007/s00170-015-7176-1

    Article  Google Scholar 

  16. P. Ulysse, Three-dimensional modeling of the friction stir-welding process. Int. J. Mach. Tools Manuf. 42(14), 1549 (2002). https://doi.org/10.1016/S0890-6955(02)00114-1

    Article  Google Scholar 

  17. Z. Zhang, H.W. Zhang, Numerical studies on controlling of process parameters in friction stir welding. J. Mater. Process. Technol. 209(1), 241 (2009). https://doi.org/10.1016/j.jmatprotec.2008.01.044

    Article  CAS  Google Scholar 

  18. D.M. Neto, P. Neto, Numerical modeling of friction stir welding process: a literature review. Int. J. Adv. Manuf. Techn. 65, 115 (2013). https://doi.org/10.1007/s00170-012-4154-8

    Article  Google Scholar 

  19. M. Bahrami, M.F. Nikoo, M.K.B. Givi, Microstructural and mechanical behaviors of nano-SiC-reinforced AA7075-O FSW joints prepared through two passes. Mater. Sci. Eng. A 626, 220 (2015). https://doi.org/10.1016/j.msea.2014.12.009

    Article  CAS  Google Scholar 

  20. M. Yang, C. Xu, C. Wu, K.C. Lin, Y.J. Chao, L. An, Fabrication of AA6061/Al 2 O 3 nano ceramic particle reinforced composite coating by using friction stir processing. J. Mater. Sci. 45(16), 4431 (2010). https://doi.org/10.1007/s10853-010-4525-1

    Article  CAS  Google Scholar 

  21. T. Singh, S.K. Tiwari, D.K. Shukla, Friction-stir welding of AA6061-T6: The effects of Al2O3 nano-particles addition. Results in Mat. 1, 100005 (2019). https://doi.org/10.1016/j.rinma.2019.100005

    Article  Google Scholar 

  22. M. Bahrami, M.K.B. Givi, K. Dehghani, N. Parvin, On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique. Mater. Des. 53, 519 (2014). https://doi.org/10.1016/j.matdes.2013.07.049

    Article  CAS  Google Scholar 

  23. A.H.N. Byung-Wook, C.H.O.I. Don-Hyun, K.I.M. Yong-Hwan, J.U.N.G. Seung-Boo, Fabrication of SiCp/AA5083 composite via friction stir welding. Trans. Nonferrous Met. Soc. China. 22, 634 (2012). https://doi.org/10.1016/S1003-6326(12)61777-4

    Article  CAS  Google Scholar 

  24. A. Dolatkhah, P. Golbabaei, M.B. Givi, F. Molaiekiya, Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater. Des. 37, 458 (2012). https://doi.org/10.1016/j.matdes.2011.09.035

    Article  CAS  Google Scholar 

  25. H.M. Jamalian, H. Ramezani, H. Ghobadi, M. Ansari, S. Yari, M.K.B. Givi, Processing–structure–property correlation in nano-SiC-reinforced friction stir welded aluminum joints. J. Manuf. Process. 21, 180 (2016). https://doi.org/10.1016/j.jmapro.2015.12.008

    Article  Google Scholar 

  26. M.A. Pasha, P.R. Reddy, P. Laxminarayana, I.A. Khan, SiC and Al2O3 reinforced friction stir welded joint of aluminium alloy 6061 (In Strengthening and Joining by Plastic Deformation, Springer, Singapore, 2019)

    Google Scholar 

  27. M. Abbasi, A. Abdollahzadeh, B. Bagheri, H. Omidvar, The effect of SiC particle addition during FSW on microstructure and mechanical properties of AZ31 magnesium alloy. J. Mater. Eng. Perform. 24(12), 5037 (2015). https://doi.org/10.1007/s11665-015-1786-5

    Article  CAS  Google Scholar 

  28. W.B. Lee, C.Y. Lee, M.K. Kim, J.I. Yoon, Y.J. Kim, Y.M. Yoen, S.B. Jung, Microstructures and wear property of friction stir welded AZ91 Mg/SiC particle reinforced composite. Compos. Sci. Technol. 66(11–12), 1513 (2006). https://doi.org/10.1016/j.compscitech.2005.11.023

    Article  CAS  Google Scholar 

  29. M. Azizieh, A.H. Kokabi, P. Abachi, Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Mater. Des. 32(4), 2034 (2011). https://doi.org/10.1016/j.matdes.2010.11.055

    Article  CAS  Google Scholar 

  30. H. Jafari, H. Mansouri, M. Honarpisheh, Investigation of residual stress distribution of dissimilar Al-7075-T6 and Al-6061-T6 in the friction stir welding process strengthened with SiO2 nanoparticles. J. Manuf. Process. 43, 145 (2019). https://doi.org/10.1016/j.jmapro.2019.05.023

    Article  Google Scholar 

  31. M. Salehi, M. Saadatmand, J.A. Mohandesi, Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing. Trans. Nonferrous Met. Soc. China. 22(5), 1055 (2012). https://doi.org/10.1016/S1003-6326(11)61283-1

    Article  CAS  Google Scholar 

  32. A.A. Fallahi, A. Shokuhfar, A.O. Moghaddam, A. Abdolahzadeh, Analysis of SiC nano-powder effects on friction stir welding of dissimilar Al-Mg alloy to A316L stainless steel. J. Manuf. Process. 30, 418 (2017). https://doi.org/10.1016/j.jmapro.2017.09.027

    Article  Google Scholar 

  33. K. Inada, H. Fujii, Y.S. Ji, Y.F. Sun, Y. Morisada, Effect of gap on FSW joint formation and development of friction powder processing. Sci. Technol. Weld. Join. 15(2), 131 (2010). https://doi.org/10.1179/136217109X12568132624244

    Article  CAS  Google Scholar 

  34. A. Abdollahzadeh, A. Shokuhfar, H. Omidvar, J.M. Cabrera, A. Solonin, A. Ostovari, M. Abbasi, Structural evaluation and mechanical properties of AZ31/SiC nano-composite produced by friction stir welding process at various welding speeds. Proc. Inst. Mech. Eng. L: J. Mater. Des. Appl. 233(5), 831 (2019). https://doi.org/10.1177/1464420717708485

    Article  CAS  Google Scholar 

  35. H. Abdolahzadeh, M.A. Omidvar, M. Safarkhanian, Bahrami, Studying microstructure and mechanical properties of SiC-incorporated AZ31 joints fabricated through FSW: the effects of rotational and traveling speeds. Int. J. Adv. Manuf. Techn. 75(5–8), 1189 (2014). https://doi.org/10.1007/s00170-014-6205-9

    Article  Google Scholar 

  36. R. Kesharwani, K.K. Jha, C. Sarkar, M. Imam, Numerical and experimental studies on friction stir welding of 6061–T6 AA with Al2O3 powder particle reinforcement. Mater. Today: Proc. 56, 826–833 (2022). https://doi.org/10.1016/j.matpr.2022.02.295

    Article  CAS  Google Scholar 

  37. R. Nandan, G.G. Roy, T. Debroy, Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding. Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. 37(4), 1247–1259 (2006). https://doi.org/10.1007/s11661-006-1076-9

    Article  Google Scholar 

  38. A. Sadeghian, M. Taherizadeh, Atapour, Simulation of weld morphology during friction stir welding of aluminum-stainless steel joint. J. Mater. Process. Technol. 259, 96–108 (2018). https://doi.org/10.1016/j.jmatprotec.2018.04.012

    Article  CAS  Google Scholar 

  39. M. Mehta, G.M. Reddy, A.V. Rao, A. De, Numerical modeling of friction stir welding using the tools with polygonal pins. Def. Technol. 11(3), 229–236 (2015). https://doi.org/10.1016/j.dt.2015.05.001

    Article  Google Scholar 

  40. J. Schneider, S. Brooke, A.C. Nunes, Material flow modification in a FSW through introduction of flats. Metall. Mater. Trans. B. 47(1), 720–730 (2016). https://doi.org/10.1007/s11663-015-0523-7

    Article  CAS  Google Scholar 

  41. M. Hamilton, O. Kopyściański, S. Senkov, Dymek, A coupled thermal/material flow model of friction stir welding applied to Sc-modified aluminum alloys. Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. 44(4), 1730–1740 (2013). https://doi.org/10.1007/s11661-012-1512-y

    Article  CAS  Google Scholar 

  42. A. Hamilton, S. Sommers, Dymek, A thermal model of friction stir welding applied to Sc-modified Al–Zn–Mg–Cu alloy extrusions. Int. J. Mach. Tools Manuf. 49(3–4), 230–238 (2009). https://doi.org/10.1016/j.ijmachtools.2008.11.004

    Article  Google Scholar 

  43. H. Seli, M. Awang, A.I.M. Ismail, E. Rachman, Z.A. Ahmad, Evaluation of properties and FEM model of the friction welded mild steel-Al6061-alumina. Mater. Res. 16, 453–467 (2013). https://doi.org/10.1590/S1516-14392012005000178

    Article  CAS  Google Scholar 

  44. M. Sedighi, D. Afshari, F. Nazari, Investigation of the effect of sheet thickness on residual stresses in resistance spot welding of aluminum sheets. Proc. Inst. Mech. Eng. C. 232(4), 621–638 (2018). https://doi.org/10.1177/0954406216685124

    Article  CAS  Google Scholar 

  45. T.R. McNelley, S. Swaminathan, J.Q. Su, Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scripta Mater. 58(2008), 349–354 (2008). https://doi.org/10.1016/j.scriptamat.2007.09.064

    Article  CAS  Google Scholar 

  46. J.Q. Su, T.W. Nelson, C.J. Sterling, Microstructure evolution during FSW/FSP of high strength aluminum alloys. Mater. Sci. Eng. A 405, 277–286 (2005). https://doi.org/10.1016/j.msea.2005.06.009

    Article  CAS  Google Scholar 

  47. V.K.S. Jain, K.U. Yazar, S. Muthukumaran, Development and characterization of Al5083-CNTs/SiC composites via friction stir processing. J. Alloys Compd. 798, 82–92 (2019). https://doi.org/10.1016/j.jallcom.2019.05.232

    Article  CAS  Google Scholar 

  48. T.E. Abioye, H. Zuhailawati, A.S. Anasyida, S.A. Yahaya, M.N.F. Hilmy, Enhancing the surface quality and tribomechanical properties of AA 6061–T6 friction stir welded joints reinforced with varying SiC contents. J. Mater. Eng. Perform. 30(6), 4356–4369 (2021). https://doi.org/10.1007/s11665-021-05760-x

    Article  CAS  Google Scholar 

  49. Y.S. Sato, S.H.C. Park, H. Kokawa, Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys. Metall. Mater. Trans. A 32, 3033–3042 (2001). https://doi.org/10.1007/s11661-001-0178-7

    Article  Google Scholar 

  50. A.P.G. Khodabakhshi, P. Svec, Reactive friction-stir processing of an Al-Mg alloy with introducing multi-walled carbon nano-tubes (MW-CNTs): microstructural characteristics and mechanical properties. Mater. Char. 131, 359–373 (2017). https://doi.org/10.1016/j.matchar.2017.07.027

    Article  CAS  Google Scholar 

  51. B.T. Ogunsemi, T.E. Abioye, F. Orekunrin, P.O. Oladimeji, J.R. Babatunde, T.I. Ogedengbe, Joint quality enhancement of AA6061-T6 friction stir weldment by reinforcing with pulverized glass waste using different reinforcement strategies. Mater. Res. Express 4, 025023 (2022). https://doi.org/10.1088/2631-8695/ac6ece

    Article  Google Scholar 

  52. B.T. Ogunsemi, O.M. Eta, E. Olanipekun, T.E. Abioye, T.I. Ogedengbe, Tensile strength prediction by regression analysis for pulverized glass waste-reinforced aluminium alloy 6061–T6 friction stir weldments. Sādhanā 47(2), 1–12 (2022). https://doi.org/10.1007/s12046-022-01830-5

    Article  Google Scholar 

Download references

Acknowledgments

The author Dr. Murshid Imam acknowledges DST, SERB, the Government of India funding support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Kesharwani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesharwani, R., Jha, K.K., Imam, M. et al. The optimization of the groove depth height in friction stir welding of AA 6061-T6 with Al2O3 powder particle reinforcement. Journal of Materials Research 37, 3743–3760 (2022). https://doi.org/10.1557/s43578-022-00748-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00748-2

Navigation