Log in

Multi-principal element grain boundaries: Stabilizing nanocrystalline grains with thick amorphous complexions

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Amorphous complexions have recently been demonstrated to simultaneously enhance the ductility and stability of certain nanocrystalline alloys. In this study, three quinary alloys (Cu–Zr–Hf–Mo–Nb, Cu–Zr–Hf–Nb–Ti, and Cu–Zr–Hf–Mo–W) are studied to test the hypothesis that increasing the chemical complexity of the grain boundaries will result in thicker amorphous complexions and further stabilize a nanocrystalline microstructure. Significant boundary segregation of Zr, Nb, and Ti is observed in the Cu–Zr–Hf–Nb–Ti alloy, which creates a quaternary interfacial composition that limits average grain size to 63 nm even after 1 week at ~ 97% of the melting temperature. This high level of thermal stability is attributed to the complex grain boundary chemistry and amorphous structure resulting from multi-component segregation. High-resolution transmission electron microscopy reveals that the increased chemical complexity of the grain boundary region in the Cu–Zr–Hf–Nb–Ti alloy results in an average amorphous complexion thickness of 2.44 nm, approximately 44% and 32% thicker than amorphous complexions previously observed in Cu–Zr and Cu–Zr–Hf alloys.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. S.J. Dillon, M. Tang, W.C. Carter, M.P. Harmer, Complexion: a new concept for kinetic engineering in materials science. Acta Mater. 55, 6208–6218 (2007)

    Article  CAS  Google Scholar 

  2. P.R. Cantwell, M. Tang, S.J. Dillon, J. Luo, G.S. Rohrer, M.P. Harmer, Grain boundary complexions. Acta Mater. 62, 1–48 (2014)

    Article  CAS  Google Scholar 

  3. S.J. Dillon, M.P. Harmer, Demystifying the role of sintering additives with “complexion.” J. Eur. Ceram. Soc. 28, 1485–1493 (2008)

    Article  CAS  Google Scholar 

  4. M. Tang, W.C. Carter, R.M. Cannon, Diffuse interface model for structural transitions of grain boundaries. Phys. Rev. B 73, 024102 (2006)

    Article  Google Scholar 

  5. A. Subramaniam, C.T. Koch, R.M. Cannon, M. Rühle, Intergranular glassy films: an overview. Mater. Sci. Eng. A 422, 3–18 (2006)

    Article  Google Scholar 

  6. E.I. Rabkin, L.S. Shvindlerman, B.B. Straumal, Grain boundaries: phase transitions and critical phenomena. Int. J. Mod. Phys. B 05, 2989–3028 (1991)

    Article  Google Scholar 

  7. E.W. Hart: Grain boundary phase transformations, in The Nature and Behavior of Grain Boundaries, ed. By H. Hu (Springer US, New York, NY, 1972), pp. 155–170

  8. M. Tang, W.C. Carter, R.M. Cannon, Grain boundary order-disorder transitions. J. Mater. Sci. 41, 7691–7695 (2006)

    Article  CAS  Google Scholar 

  9. J.W. Cahn, Transitions and phase equilibria among grain boundary structures. J. Phys. Colloques 43, C6-199-C196-213 (1982)

    Article  Google Scholar 

  10. P. Wynblatt, D. Chatain, Solid-state wetting transitions at grain boundaries. Mater. Sci. Eng. A 495, 119–125 (2008)

    Article  Google Scholar 

  11. M. Tang, W.C. Carter, R.M. Cannon, Grain boundary transitions in binary alloys. Phys. Rev. Lett. 97, 075502 (2006)

    Article  Google Scholar 

  12. J. Luo, Grain boundary complexions: the interplay of premelting, prewetting, and multilayer adsorption. Appl. Phys. Lett. 95, 071911 (2009)

    Article  Google Scholar 

  13. P. Lejček, Grain boundaries: description, structure and thermodynamics, in Grain Boundary Segregation in Metals. ed. by B.P. Lejcek (Springer, Berlin, 2010), pp. 5–24

    Chapter  Google Scholar 

  14. Y. Mishin, W.J. Boettinger, J.A. Warren, G.B. McFadden, Thermodynamics of grain boundary premelting in alloys. I. Phase-field modeling. Acta Mater. 57, 3771–3785 (2009)

    Article  CAS  Google Scholar 

  15. P.L. Williams, Y. Mishin, Thermodynamics of grain boundary premelting in alloys. II. Atomistic simulation. Acta Mater. 57, 3786–3794 (2009)

    Article  CAS  Google Scholar 

  16. L. Wang, R. Darvishi Kamachali, Density-based grain boundary phase diagrams: application to Fe-Mn-Cr, Fe-Mn-Ni, Fe-Mn-Co, Fe-Cr-Ni and Fe-Cr-Co alloy systems. Acta Mater. 207, 116668 (2021)

    Article  CAS  Google Scholar 

  17. N. Zhou, Z. Yu, Y. Zhang, M.P. Harmer, J. Luo, Calculation and validation of a grain boundary complexion diagram for Bi-doped Ni. Scr. Mater. 130, 165–169 (2017)

    Article  CAS  Google Scholar 

  18. O.I. Noskovich, E.I. Rabkin, V.N. Semenov, B.B. Straumal, L.S. Shvindlerman, Wetting and premelting phase transitions in 38° [100] tilt grain boundary in (Fe-12 at.% Si)-Zn alloy in the vicinity of the A2–B2 bulk ordering in Fe-12 at.% Si alloy. Acta Metall. Mater. 39, 3091–3098 (1991)

    Article  CAS  Google Scholar 

  19. E.I. Rabkin, V.N. Semenov, L.S. Shvindlerman, B.B. Straumal, Penetration of tin and zinc along tilt grain boundaries 43° [100] in Fe-5 at.% Si alloy: premelting phase transition? Acta Metall. Mater. 39, 627–639 (1991)

    Article  CAS  Google Scholar 

  20. B.B. Straumal, Y.O. Kucheev, I.L. Yatskovskaya, I.V. Mogilnikova, G. Schütz, A.N. Nekrasov, B. Baretzky, Grain boundary wetting in the NdFeB-based hard magnetic alloys. J. Mater. Sci. 47, 8352–8359 (2012)

    Article  CAS  Google Scholar 

  21. M. Takashima, P. Wynblatt, B.L. Adams, Correlation of grain boundary character with wetting behavior. Interface Sci. 8, 351–361 (2000)

    Article  CAS  Google Scholar 

  22. L.S. Chang, E. Rabkin, B.B. Straumal, S. Hofmann, B. Baretzky, W. Gust, Grain boundary segregation in the Cu-Bi system. Defect Diffus. Forum 156, 135–146 (1998)

    Article  CAS  Google Scholar 

  23. S. Divinski, M. Lohmann, C. Herzig, B. Straumal, B. Baretzky, W. Gust, Grain-boundary melting phase transition in the Cu-Bi system. Phys. Rev. B 71, 104104 (2005)

    Article  Google Scholar 

  24. D.R. Clarke, G. Thomas, Grain boundary phases in a hot-pressed MgO fluxed silicon nitride. J. Am. Ceram. Soc. 60, 491–495 (1977)

    Article  CAS  Google Scholar 

  25. R. Brydson, S.-C. Chen, F.L. Riley, S.J. Milne, X. Pan, M. Rühle, Microstructure and chemistry of intergranular glassy films in liquid-phase-sintered alumina. J. Am. Ceram. Soc. 81, 369–379 (1998)

    Article  CAS  Google Scholar 

  26. I. MacLaren, R.M. Cannon, M.A. Gülgün, R. Voytovych, N. Popescu-Pogrion, C. Scheu, U. Täffner, M. Rühle, Abnormal grain growth in alumina: synergistic effects of yttria and silica. J. Am. Ceram. Soc. 86, 650–659 (2003)

    Article  CAS  Google Scholar 

  27. D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, P.P. Choi, Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces. Curr. Opin. Solid State Mater. Sci. 18, 253–261 (2014)

    Article  CAS  Google Scholar 

  28. P. Lejček, S. Hofmann, Thermodynamics and structural aspects of grain boundary segregation. Crit. Rev. Solid State Mater. Sci. 20, 1–85 (1995)

    Article  Google Scholar 

  29. J. Nie, J.M. Chan, M. Qin, N. Zhou, J. Luo, Liquid-like grain boundary complexion and sub-eutectic activated sintering in CuO-doped TiO2. Acta Mater. 130, 329–338 (2017)

    Article  CAS  Google Scholar 

  30. J. Luo, H. Wang, Y.-M. Chiang, Origin of solid-state activated sintering in Bi2O3-doped ZnO. J. Am. Ceram. Soc. 82, 916–920 (1999)

    Article  CAS  Google Scholar 

  31. E. Jud, C.B. Huwiler, L.J. Gauckler, Sintering analysis of undoped and cobalt oxide doped ceria solid solutions. J. Am. Ceram. Soc. 88, 3013–3019 (2005)

    Article  CAS  Google Scholar 

  32. J. Luo, Liquid-like interface complexion: from activated sintering to grain boundary diagrams. Curr. Opin. Solid State Mater. Sci. 12, 81–88 (2008)

    Article  CAS  Google Scholar 

  33. V.K. Gupta, D.-H. Yoon, H.M. Meyer, J. Luo, Thin intergranular films and solid-state activated sintering in nickel-doped tungsten. Acta Mater. 55, 3131–3142 (2007)

    Article  CAS  Google Scholar 

  34. X. Shi, J. Luo, Grain boundary wetting and prewetting in Ni-doped Mo. Appl. Phys. Lett. 94, 251908 (2009)

    Article  Google Scholar 

  35. G. Fletcher, M.R. James, J.R. Moon, The nickel activated sintering of Tungsten. Scr. Metall. 5, 105–107 (1971)

    Article  CAS  Google Scholar 

  36. V.V. Panichkina, V.V. Skorokhod, A.F. Khrienko, Activated sintering of tungsten and molybdenum powders. Sov. Powder Metall. Met. Ceram. 6, 558–560 (1967)

    Article  Google Scholar 

  37. H.V. Atkinson, Overview no. 65: theories of normal grain growth in pure single phase systems. Acta Metall. 36, 469–491 (1988)

    Article  CAS  Google Scholar 

  38. H. Li, F. Ebrahimi, Ductile-to-brittle transition in nanocrystalline metals. Adv. Mater. 17, 1969–1972 (2005)

    Article  CAS  Google Scholar 

  39. C.C. Koch, D.G. Morris, K. Lu, A. Inoue, Ductility of nanostructured materials. MRS Bull. 24, 54–58 (1999)

    Article  CAS  Google Scholar 

  40. J.D. Schuler, O.K. Donaldson, T.J. Rupert, Amorphous complexions enable a new region of high temperature stability in nanocrystalline Ni-W. Scr. Mater. 154, 49–53 (2018)

    Article  CAS  Google Scholar 

  41. J. Ding, Z. Shang, Y.F. Zhang, R. Su, J. Li, H. Wang, X. Zhang, Tailoring the thermal stability of nanocrystalline Ni alloy by thick grain boundaries. Scr. Mater. 182, 21–26 (2020)

    Article  CAS  Google Scholar 

  42. J.T. Zhao, J.Y. Zhang, L.F. Cao, Y.Q. Wang, P. Zhang, K. Wu, G. Liu, J. Sun, Zr alloying effect on the microstructure evolution and plastic deformation of nanostructured Cu thin films. Acta Mater. 132, 550–564 (2017)

    Article  CAS  Google Scholar 

  43. Z. Pan, T.J. Rupert, Amorphous intergranular films as toughening structural features. Acta Mater. 89, 205–214 (2015)

    Article  CAS  Google Scholar 

  44. S. Pal, K. Vijay Reddy, C. Deng, On the role of Cu-Zr amorphous intergranular films on crack growth retardation in nanocrystalline Cu during monotonic and cyclic loading conditions. Comput. Mater. Sci. 169, 109122 (2019)

    Article  CAS  Google Scholar 

  45. A. Khalajhedayati, Z. Pan, T.J. Rupert, Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility. Nat. Commun. 7, 1–8 (2016)

    Article  Google Scholar 

  46. C.M. Grigorian, T.J. Rupert, Thick amorphous complexion formation and extreme thermal stability in ternary nanocrystalline Cu-Zr-Hf alloys. Acta Mater. 179, 172–182 (2019)

    Article  CAS  Google Scholar 

  47. C.M. Grigorian, T.J. Rupert, Critical cooling rates for amorphous-to-ordered complexion transitions in Cu-rich nanocrystalline alloys. Acta Mater. 206, 116650 (2021)

    Article  CAS  Google Scholar 

  48. A.I. C. Suryanarayana: Bulk Metallic Glasses, 22 November 2017 edn. (City, 2017).

  49. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279–306 (2000)

    Article  CAS  Google Scholar 

  50. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004)

    Article  CAS  Google Scholar 

  51. E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019)

    Article  CAS  Google Scholar 

  52. N. Zhou, T. Hu, J. Huang, J. Luo, Stabilization of nanocrystalline alloys at high temperatures via utilizing high-entropy grain boundary complexions. Scr. Mater. 124, 160–163 (2016)

    Article  CAS  Google Scholar 

  53. G. Wu, C. Liu, L. Sun, Q. Wang, B. Sun, B. Han, J.-J. Kai, J. Luan, C.T. Liu, K. Cao, Y. Lu, L. Cheng, J. Lu, Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity. Nat. Commun. 10, 5099 (2019)

    Article  Google Scholar 

  54. G. Wu, S. Balachandran, B. Gault, W. **a, C. Liu, Z. Rao, Y. Wei, S. Liu, J. Lu, M. Herbig, W. Lu, G. Dehm, Z. Li, D. Raabe, Crystal-glass high-entropy nanocomposites with near theoretical compressive strength and large deformability. Adv. Mater. 32, 2002619 (2020)

    Article  CAS  Google Scholar 

  55. T. Yang, Y.L. Zhao, W.P. Li, C.Y. Yu, J.H. Luan, D.Y. Lin, L. Fan, Z.B. Jiao, W.H. Liu, X.J. Liu, J.J. Kai, J.C. Huang, C.T. Liu, Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces. Science 369, 427 (2020)

    Article  CAS  Google Scholar 

  56. N. Zhou, T. Hu, J. Luo, Grain boundary complexions in multicomponent alloys: challenges and opportunities. Curr. Opin. Solid State Mater. Sci. 20, 268–277 (2016)

    Article  CAS  Google Scholar 

  57. J.D. Schuler, T.J. Rupert, Materials selection rules for amorphous complexion formation in binary metallic alloys. Acta Mater. 140, 196–205 (2017)

    Article  CAS  Google Scholar 

  58. Z. Huang, P. Wang, F. Chen, Q. Shen, L. Zhang, Understanding solute effect on grain boundary strength based on atomic size and electronic interaction. Sci. Rep. 10, 16856 (2020)

    Article  CAS  Google Scholar 

  59. D. McLean, A. Maradudin, Grain boundaries in metals. Phys. Today 11, 35 (1958)

    Article  Google Scholar 

  60. M. Kapoor, T. Kaub, K.A. Darling, B.L. Boyce, G.B. Thompson, An atom probe study on Nb solute partitioning and nanocrystalline grain stabilization in mechanically alloyed Cu-Nb. Acta Mater. 126, 564–575 (2017)

    Article  CAS  Google Scholar 

  61. M. Yoshitake, K. Yoshihara, Surface segregation of substrate element on metal films in film/substrate combinations with Nb, Ti and Cu. Surf. Interface Anal. 18, 509–513 (1992)

    Article  CAS  Google Scholar 

  62. C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 46, 1–184 (2001)

    Article  CAS  Google Scholar 

  63. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Charact. 85, 111–123 (2013)

    Article  CAS  Google Scholar 

  64. M.A. Tschopp, H.A. Murdoch, L.J. Kecskes, K.A. Darling, “Bulk” nanocrystalline metals: review of the current state of the art and future opportunities for copper and copper alloys. JOM 66, 1000–1019 (2014)

    Article  CAS  Google Scholar 

  65. O.K. Donaldson, K. Hattar, T. Kaub, G.B. Thompson, J.R. Trelewicz, Solute stabilization of nanocrystalline tungsten against abnormal grain growth. J. Mater. Res. 33, 68–80 (2017)

    Article  Google Scholar 

  66. H.A. Murdoch, C.A. Schuh, Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater. 61, 2121–2132 (2013)

    Article  CAS  Google Scholar 

  67. H.A. Murdoch, C.A. Schuh, Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design. J. Mater. Res. 28, 2154–2163 (2013)

    Article  CAS  Google Scholar 

  68. C. Brandl, T.C. Germann, A. Misra, Structure and shear deformation of metallic crystalline–amorphous interfaces. Acta Mater. 61, 3600–3611 (2013)

    Article  CAS  Google Scholar 

  69. L. Li, E.-B. Liu, Q.-F. Li, Z. Li, Non-equilibrium grain boundary cosegregation of Mo and P. Appl. Surf. Sci. 252, 3989–3992 (2006)

    Article  CAS  Google Scholar 

  70. H. Erhart, H.J. Grabke, Equilibrium segregation of phosphorus at grain boundaries of Fe–P, Fe–C–P, Fe–Cr–P, and Fe–Cr–C–P alloys. Met. Sci. 15, 401–408 (1981)

    Article  CAS  Google Scholar 

  71. W. Yu-Qing, C.J. McMahon, Interaction of phosphorus, carbon, manganese, and chromium in intergranular embrittlement of iron. Mater. Sci. Technol. 3, 207–216 (1987)

    Article  Google Scholar 

  72. J.R. Rice, J.-S. Wang, Embrittlement of interfaces by solute segregation. Mater. Sci. Eng. A 107, 23–40 (1989)

    Article  Google Scholar 

  73. W. **ng, A.R. Kalidindi, C.A. Schuh, Preferred nanocrystalline configurations in ternary and multicomponent alloys. Scr. Mater. 127, 136–140 (2017)

    Article  CAS  Google Scholar 

  74. W. **ng, A. Kalidindi, D. Amram, C. Schuh, Solute interaction effects on grain boundary segregation in ternary alloys. Acta Mater. 161, 285–294 (2018)

    Article  CAS  Google Scholar 

  75. P. Wynblatt, D. Chatain, Modeling grain boundary and surface segregation in multicomponent high-entropy alloys. Phys. Rev. Mater. 3, 054004 (2019)

    Article  CAS  Google Scholar 

  76. D. Ma, M. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, D. Raabe, Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys. Acta Mater. 98, 288–296 (2015)

    Article  CAS  Google Scholar 

  77. L. Li, Z. Li, A. Kwiatkowski da Silva, Z. Peng, H. Zhao, B. Gault, D. Raabe, Segregation-driven grain boundary spinodal decomposition as a pathway for phase nucleation in a high-entropy alloy. Acta Mater. 178, 1–9 (2019)

    Article  Google Scholar 

  78. Q. Ye, G. Yang, B. Yang, Segregation engineering in a promising heat-resistant AlCoCrFeMo0.05Ni2 high entropy alloy. J. Alloys Compd. 869, 159336 (2021)

    Article  CAS  Google Scholar 

  79. Z. Sun, X. Tan, C. Wang, M. Descoins, D. Mangelinck, S.B. Tor, E.A. Jägle, S. Zaefferer, D. Raabe, Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: example of an AlxCoCrFeNi high-entropy alloy. Acta Mater. 204, 116505 (2021)

    Article  CAS  Google Scholar 

  80. F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, E.P. George, Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112, 40–52 (2016)

    Article  CAS  Google Scholar 

  81. L. Lutterotti, M. Bortolotti, G. Ischia, I. Lonardelli, H.R. Wenk: Rietveld texture analysis from diffraction images. Tenth European Powder Diffraction Conference, (De Gruyter, Berlin, Boston, 2007), pp. 125–130

Download references

Acknowledgments

This study was supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division under Award No. DE-SC0021224. SEM, FIB, TEM, and XRD work were performed at the UC Irvine Materials Research Institute (IMRI) using instrumentation funded in part by the National Science Foundation Center for Chemistry at the Space-Time Limit (CHE-0802913).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Rupert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorian, C.M., Rupert, T.J. Multi-principal element grain boundaries: Stabilizing nanocrystalline grains with thick amorphous complexions. Journal of Materials Research 37, 554–566 (2022). https://doi.org/10.1557/s43578-021-00459-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00459-0

Keywords

Navigation