Log in

Poloxamer 407/chitosan micelles can improve α-Tocopherol effect on oral keratinocytes proliferation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study aimed to produce a Poloxamer 407/Chitosan polymeric system for the controlled release of α-TOC and evaluate its biological properties using normal oral keratinocytes. The production of the polymeric controlled release system involved loading of α-TOC and micellization of the isotropic P407 phase with subsequent encapsulation with chitosan. The chitosan coverage of the micelles was confirmed by the positive zeta potential (+ 12.8 mV). The micelles (TOC-P407-CH) developed had average particle sizes of 193.8 ± 51.0 nm (PDI 0.502 ± 0.068) (α-TOC 50 mg/mL—TOC50-P407-CH) and 714.5 ± 110.18 nm (PDI 0.886 ± 0.196) (α-TOC 200 mg/mL—TOC200-P407-CH) (P = 0.0018) with irregular morphology. The release test by UV–Vis demonstrated a slow and controlled release for TOC50-P407-CH (initial release peak of 82% after the first 5 h). The α-TOC-loaded micelles did not show any cytotoxicity in vitro (P > 0.05). Also, they promoted superior cell proliferation in NOE cells (P < 0.001). This study shows that a controlled release system developed with 50 mg/mL α-TOC has the potential to be used in epithelial cell regeneration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H. Yan, Z. **, W. **, Y. Zhong, H. Ai, Y. Wu, Q. Xu, X. Bai, D. Liu, W. Nie, Y. Zuo, A systematic review and meta-analysis of acupuncture treatment for oral ulcer. Medicine 99(29), e21314–e21318 (2020)

    Article  Google Scholar 

  2. E. Kürklü-gürleyen, M. Ögüt-Erişen, O. Çakır, Ö. Uysal, G. Ak, Quality of life in patients with recurrent aphthous stomatitis treated with a mucoadhesive patch containing citrus essential oil. Patient Prefer Adher. 10, 967–973 (2016)

    Article  Google Scholar 

  3. S.G. Fitzpatrick, D.M. Cohen, A.N. Clark, Lesões Ulceradas da Mucosa Oral: Revisão Clínica e Histológica. Head Neck Pathol. 13(1), 91–102 (2019)

    Article  Google Scholar 

  4. G. Daugėlaitė, K. Užkuraitytė, E. Jagelavičienė, A. Filipauskas, Prevention and Treatment of Chemotherapy and Radiotherapy Induced Oral Mucositis. Medicina 55(2), 25 (2019)

    Article  Google Scholar 

  5. H.Y. Sroussi, J.B. Epstein, R.-J. Bensadoun, D.P. Saunders, R.V. Lalla, C.A. Migliorati et al., Common oral complications of head and neck cancer radiation therapy: mucositis, infections, saliva change, fibrosis, sensory dysfunctions, dental caries, periodontal disease, and osteoradionecrosis. Cancer Med. 6, 2918–2931 (2017)

    Article  Google Scholar 

  6. L.F. Cuba, A.B. Filho, K. Cherubini, F.G. Salum, M.A.Z. Figueiredo, Topical application of Aloe vera and vitamin E on induced ulcers on the tongue of rats subjected to radiation: clinical and histological evaluation. Support Care Cancer. 24, 2557–2564 (2016)

    Article  Google Scholar 

  7. V. Saez, I.D.L. Souza, C.R.E. Mansur, Lipid Nanoparticles (SLN & NLC) for delivery of vitamin E: a comprehensive review. Int. J. Cosmet. Sci. 40, 103–116 (2018)

    Article  CAS  Google Scholar 

  8. C. Caddeo, M.L. Manca, J.E. Peris, I. Usach, M. Matos, X. Fernàndez-busquets et al., Tocopherol-loaded transfersomes: in vitro antioxidant activity and efficacy in skin regeneration. Int. J. Pharm. 15, 34–41 (2018)

    Article  Google Scholar 

  9. Y. Horikoshi, K. Kamizaki, T. Hanaki1, M. Morimoto, Y. Kitagawa, K. Nakaso, et al. α-Tocopherol promotes HaCaT keratinocyte wound repair through the regulation of polarity proteins leading to the polarized cell migration. Biofactors. 44, 180–91(2018).

  10. P.B. Shekhawat, V.B. Pokharkar, Understanding peroral absorption: regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles. Acta Pharm. Sin. B 7(3), 260–280 (2017)

    Article  Google Scholar 

  11. R.G. Saratale, H.S. Lee, Y.E. Koo, G.D. Saratale, Y.J. Kim, J.Y. Imm, Y. Park, Absorption kinetics of vitamin E nanoemulsion and green tea microstructures by intestinal in situ single perfusion technique in rats. Food Res. Int. 106, 149–155 (2018)

    Article  CAS  Google Scholar 

  12. A.A. Sultan, S.A. El-gizawy, M.A. Osman, G.M. Maghraby, Self dispersing mixed micelles forming systems for enhanced dissolution and intestinal permeability of hydrochlorothiazide. Colloids Surf. B 149, 206–216 (2017)

    Article  CAS  Google Scholar 

  13. M. Almeida, M. Magalhães, F. Veiga et al., Poloxamers, poloxamines and polymeric micelles: definition, structure and therapeutic applications in cancer. J. Polym. Res. 25, 31 (2018)

    Article  Google Scholar 

  14. L. Ci, Z. Huang, Y. Liu, Z. Liu, G. Wei, W. Lu, Amino-functionalized poloxamer 407 with both mucoadhesive and thermosensitive properties: preparation, characterization and application in a vaginal drug delivery system. Acta. Pharm. Sin. B 7(5), 593–602 (2017)

    Article  Google Scholar 

  15. G. Leyva-Gómez, E. Santillan-Reyes, E. Lima, A. Madrid-Martínez, E. Krötzsch, D. Quintanar-Guerrero et al., A novel hydrogel of poloxamer 407 and chitosan obtained by gamma irradiation exhibits physicochemical properties for wound management. Mater. Sci. Eng. C 74, 36–46 (2017)

    Article  Google Scholar 

  16. A.A. Menazea, A.M. Ismail, N.S. Awwad, H.A. Ibrahium, Physical characterization and antibacterial activity of PVA/Chitosan matrix doped by selenium nanoparticles prepared via one-pot laser ablation route. J. Mater. Res. Technol. 9(5), 9598–9606 (2020)

    Article  CAS  Google Scholar 

  17. Q. Ma, Y. Gao, W. Sun, J. Cao, Y. Liang, S. Han, X. Wang, Y. Sun, Self-Assembled chitosan/phospholipid nanoparticles: from fundamentals to preparation for advanced drug delivery. Drug Deliv. 27(1), 200–215 (2020)

    Article  CAS  Google Scholar 

  18. C. Saikia, P. Gogoi, T.K. Maji, Journal of molecular and genetic chitosan: a promising biopolymer in drug delivery applications. J. Mol. Genet. Med. 4, 1–10 (2015)

    Google Scholar 

  19. T. Gratieri, G. Martins, E. Melani, V. Hugo, O. Freitas, R. Fonseca et al., A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur. J. Pharm. Biopharm. 75(2), 186–193 (2010)

    Article  CAS  Google Scholar 

  20. K. Kesavan, S. Kant, P.N. Singh, J.K. Pandit. Mucoadhesive Chitosan-Coated Cationic Microemulsion of Dexamethasone for Ocular Delivery: In Vitro and In Vivo Evaluation. Curr Eye Res. 38(3),342–52(2013).

  21. N.Varga, Á. Turcsányi, V. Hornok, E. Csapó. Vitamin E-loaded PLA- and PLGA-based core-shell nanoparticles: synthesis, structure optimization and controlled drug release. Pharmaceutics 1357–1371 (2019)

  22. P. Kumar, A. Nagarajan, P.D. Uchil, Analysis of Cell Viability by the MTT Assay. Cold Spring Harb Protoc. 6, 469–472 (2018)

    Google Scholar 

  23. M.R. Dourado, J. Korvala, P. Åström, C.E. Oliveira, N.K. Cervigne, L.S. Mofatto et al., Extracellular vesicles derived from cancer-associated fibroblasts induce the migration and invasion of oral squamous cell carcinoma. J. Extracell Vesicles. 8, 1578525 (2019)

    Article  CAS  Google Scholar 

  24. A.E. Al Moustafa, W.D. Foulkes, N. Benlimame, A. Wong, L. Yen, J. Bergeron, et al. E6/E7 proteins of HPV type 16 and ErbB-2 cooperate to induce neoplastic transformation of primary normal oral epithelial cells. Oncogene. 23(2),350(2004).

  25. A.A. El-Housseiny, S.M. Saleh, A.A. El-Masry, A.A. Allam, Children receiving chemotherapy. J. Pediatr. Dent. 31, 167–170 (2007).

  26. D.K. Sener, M. Aydin, S. Cangur, E. Guven, The effect of oral care with Chlorhexidine, Vitamin E and honey on mucositis in pediatric intensive care patients : a randomized controlled trial. J. Pediatr. Nurs. 45, e95-101 (2019)

    Article  Google Scholar 

  27. R. Basak, R. Bandyopadhyay, Encapsulation of hydrophobic drugs in Pluronic F127 micelles: effects of drug hydrophobicity, solution temperature, and pH. Langmuir 29(13), 4350–4356 (2013)

    Article  CAS  Google Scholar 

  28. P.K. Singh, V.K. Pawar, A.K. Jaiswal, Y. Singh, C.H. Srikanth, M. Chaurasia et al., Chitosan coated PluronicF127 micelles for effective delivery of Amphotericin B in Experimental Visceral Leishmaniasis. Int. J. Biol. Macromol. 105, 1220–1231 (2017)

    Article  CAS  Google Scholar 

  29. S. Alexander, T. Cosgrove, T.C. Castle, I. Grillo, S.W. Prescott, Effect of temperature, cosolvent, and added drug on pluronic—flurbiprofen micellization. J. Phys. Chem. B 116, 11545–11551 (2012)

    Article  CAS  Google Scholar 

  30. I.G. Zigoneanu, C.E. Astete, C.M. Sabliov, Nanoparticles with entrapped α-tocopherol: synthesis, characterization, and controlled release. Nanotechnology 19, 10506–10515 (2008)

    Article  Google Scholar 

  31. Y. Luo, B. Zhang, M. Whent, L.L. Yu, Q. Wang, Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study. Colloids Surf. B 85(2), 145–152 (2011)

    Article  CAS  Google Scholar 

  32. M.C. Bonferoni, F. Riva, A. Invernizzi, E. Dellera, G. Sandri, S. Rossi, et al. Alpha tocopherol loaded chitosan oleate nanoemulsions for wound healing. Evaluation on cell lines and ex vivo human biopsies, and stabilization in spray dried Trojan microparticles. Eur. J. Pharm. Biopharm. 123, 31–41 (2017).

  33. Y. Liu, S. FU, L. Lin, Y. Cao, X. **e, H. Yu, et al. Redox-sensitive Pluronic F127-tocopherol micelles: synthesis , characterization, and cytotoxicity evaluation. Int. J. Nanomed. 12, 2635–44 (2017).

  34. P. Dubey, S.A. Barker, D.Q.M. Craig, Design and characterization of cyclosporine A-loaded nano fibers for enhanced drug dissolution. ACS Omega 5(2), 1003–1013 (2020)

    Article  CAS  Google Scholar 

  35. J. He, H. Shi, S. Huang, L. Han, W. Zhang, Core-shell nanoencapsulation of α-tocopherol by blending sodium oleate and Rebaudioside A: preparation, characterization, and antioxidant activity. Molecules 23, 3183–3194 (2018)

    Article  Google Scholar 

  36. N. Liang, S. Sun, X. Gong, Q. Li, P. Yan, F. Cui, Polymeric micelles based on modified glycol chitosan for paclitaxel delivery: preparation, characterization and evaluation. Int J Mol Sci. 19, 1550–1564 (2018)

    Article  Google Scholar 

  37. E. Giuliano, D. Paolino, M. Fresta, D. Cosco, Mucosal applications of Poloxamer 407-based hydrogels: an overview. Pharmaceutics 10, 159–185 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPQ (Inct Teranostica).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panmella P. Maciel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de C. Coelho Junior, É., Maciel, P.P., de A. F. Muniz, I. et al. Poloxamer 407/chitosan micelles can improve α-Tocopherol effect on oral keratinocytes proliferation. Journal of Materials Research 36, 1447–1455 (2021). https://doi.org/10.1557/s43578-021-00169-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00169-7

Keywords

Navigation