Log in

Phase-field method of materials microstructures and properties

  • Phase-Field Method and Its Applications
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The phase-field method has become the main computational technique for modeling and predicting the microstructure evolution in materials science and engineering. Its versatility and ability to capture complex microstructure phenomena under different processing conditions make it a valuable tool for researchers and engineers in advancing our understanding and engineering of materials microstructures and properties. This issue of MRS Bulletin is focused on a few recent success stories of applying the phase-field method to understanding, discovering, and designing mesoscale structures and for guiding the design of experiments to optimize properties or discover new phenomena or functionalities. We hope this issue will inspire increasing future focus on utilizing the phase-field method to guide experimental synthesis and characterization for desirable properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. L.-Q. Chen,  Annu. Rev. Mater. Res. 32, 113 (2002)

    CAS  Google Scholar 

  2. K. Thornton, J. Agren, P.W. Voorhees, Acta Mater. 51(19), 5675 (2003)

    CAS  Google Scholar 

  3. H. Emmerich, Adv. Phys. 57(1), 1 (2008)

    CAS  Google Scholar 

  4. N. Moelans, B. Blanpain, P. Wollants, CALPHAD 32(2), 268 (2008)

    CAS  Google Scholar 

  5. I. Singer-Loginova, H.M. Singer, Rep. Prog. Phys. 71(10), 32 (2008)

    Google Scholar 

  6. Y.Z. Wang, J. Li, Acta Mater. 58(4), 1212 (2010)

    CAS  Google Scholar 

  7. B. Nestler, A. Choudhury, Curr. Opin. Solid State Mater. Sci. 15(3), 93 (2011)

    CAS  Google Scholar 

  8. I. Steinbach,  Annu. Rev. Mater. Res. 43, 89 (2013)

    CAS  Google Scholar 

  9. M.R. Tonks, L.K. Aagesen, Annu. Rev. Mater. Res. 49, 79 (2019)

    CAS  Google Scholar 

  10. D. Tourret, H. Liu, J. Llorca, Prog. Mater. Sci. 123, 19 (2022)

    Google Scholar 

  11. Y.H. Zhao, NPJ Comput. Mater. 9(1), 25 (2023)

    Google Scholar 

  12. A.A. Wheeler, W.J. Boettinger, G.B. McFadden, Phys. Rev. A 45(10), 7424 (1992)

    CAS  PubMed  Google Scholar 

  13. R. Kobayashi, Physica D 63(3–4), 410 (1993)

    Google Scholar 

  14. L.-Q. Chen, W. Yang, Phys. Rev. B 50(21), 15752 (1994)

    CAS  Google Scholar 

  15. R. Kobayashi, J.A. Warren, W.C. Carter, Physica D 140(1–2), 141 (2000)

    Google Scholar 

  16. C.E. Krill, L.-Q. Chen,  Acta Mater. 50(12), 3057 (2002)

    CAS  Google Scholar 

  17. N. Moelans, B. Blanpain, P. Wollants, Phys. Rev. B 78, 2 (2008)

    Google Scholar 

  18. L. Gránásy, G.I. Tóth, J.A. Warren, F. Podmaniczky, G. Tegze, L. Rátkai, T. Pusztai, Prog. Mater. Sci. 106, 51 (2019)

    Google Scholar 

  19. Y. Wang, L.-Q. Chen, A.G. Khachaturyan, Acta Metall. Mater. 41(1), 279 (1993)

    CAS  Google Scholar 

  20. J.Z. Zhu, A.J. Ardell, S.H. Zhou, Z.K. Liu, L.-Q. Chen, Acta Mater. 52(9), 2837 (2004)

    CAS  Google Scholar 

  21. H. Liu, Y. Gao, J.Z. Liu, Y.M. Zhu, Y. Wang, J.F. Nie, Acta Mater. 61(2), 453 (2013)

    CAS  Google Scholar 

  22. Y. Wang, A.G. Khachaturyan, Acta Mater. 45(2), 759 (1997)

    CAS  Google Scholar 

  23. V.I. Levitas, D.L. Preston, D.W. Lee, Phys. Rev. B 68, 13 (2003)

    Google Scholar 

  24. M. Mamivand, M.A. Zaeem, H. El Kadiri, Comput. Mater. Sci. 77, 304 (2013)

    CAS  Google Scholar 

  25. L.-Q. Chen, J. Am. Ceram. Soc. 91(6), 1835 (2008)

    CAS  Google Scholar 

  26. J.-J. Wang, B. Wang, L.-Q. Chen, Annu. Rev. Mater. Res. 49(1), 127 (2019) 

    CAS  Google Scholar 

  27. J.J. Sun, S. Shi, Y. Wan, J. Wang, Acta Mech. 234(2), 283 (2023)

    Google Scholar 

  28. Z.-H. Shen, J.-J. Wang, J.-Y. Jiang, S.X. Huang, Y.-H. Lin, C.-W. Nan, L.-Q. Chen, Y. Shen, Nat. Commun. 10, 1843 (2019)

  29. T.Q. Bui, X.F. Hu, Eng. Fract. Mech. 248, 33 (2021)

    Google Scholar 

  30. Y.L. Li, S. Hu, X. Sun, M. Stan, NPJ Comput. Mater. 3, 16 (2017)

    Google Scholar 

  31. T.Q. Ansari, Z. **ao, S. Hu, Y. Li, J.-L. Luo, S.-Q. Shi, NPJ Comput. Mater. 4, 38 (2018)

  32. I. Bellemans, N. Moelans, K. Verbeken, Crit. Rev. Solid State Mater. Sci. 43(5), 417 (2018)

    CAS  Google Scholar 

  33. Q. Wang, G. Zhang, Y. Li, Z. Hong, D. Wang, S. Shi, NPJ Comput. Mater. 6(1), 176 (2020)

  34. E. Meca, V.B. Shenoy, J. Lowengrub, Phys. Rev. E 88, 5 (2013)

    Google Scholar 

  35. J. Berry, S. Zhou, J. Han, D.J. Srolovitz, M.P. Haataja, Nano Lett. 17(4), 2473 (2017)

  36. K. Momeni, Y. Ji, Y. Wang, S. Paul, S. Neshani, D.E. Yilmaz, Y.K. Shin, D. Zhang, J.-W. Jiang, H.S. Park, S. Sinnott, A. van Duin, V. Crespi, L.-Q. Chen, NPJ Comput. Mater. 6(1), 22 (2020)

  37. D.M. Anderson, G.B. McFadden, A.A. Wheeler, Annu. Rev. Fluid Mech. 30, 139 (1998)

    Google Scholar 

  38. J. Kim, Commun. Comput. Phys. 12(3), 613 (2012)

    Google Scholar 

  39. A. Karma, D.A. Kessler, H. Levine, Phys. Rev. Lett. 87, 4 (2001)

    Google Scholar 

  40. C. Kuhn, R. Muller, Eng. Fract. Mech. 77(18), 3625 (2010)

    Google Scholar 

  41. C. Miehe, F. Welschinger, M. Hofacker, Int. J. Numer. Methods Eng. 83(10), 1273 (2010)

    Google Scholar 

  42. M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J.R. Hughes, C.M. Landis, Comput. Methods Appl. Mech. Eng. 217, 77 (2012)

  43. X.Q. Wang, Q. Du, J. Math. Biol. 56(3), 347 (2008)

    PubMed  Google Scholar 

  44. J.S. Lowengrub, A. Ratz, A. Voigt, Phys. Rev. E 79, 3 (2009)

    Google Scholar 

  45. D.Y. Shao, W.J. Rappel, H. Levine, Phys. Rev. Lett. 105, 10 (2010)

    Google Scholar 

  46. F. Ziebert, I.S. Aranson, NPJ Comput. Mater. 2, 16019 (2016)

    Google Scholar 

  47. W. Kohn, L.J. Sham,  Phys. Rev. 140(4A), 1133 (1965)

    Google Scholar 

  48. K.R. Elder, N. Provatas, J. Berry, P. Stefanovic, M. Grant, Phys. Rev. B 75, 064107 (2007)

  49. L.-Q. Chen, Y.H. Zhao, Prog. Mater. Sci. 124, 34 (2022)

    Google Scholar 

  50. J.D. van der Waals, Arch. Neerland. Sci. Exact. Nat. 28, 121 (1895)

    Google Scholar 

  51. V.L. Ginzburg, L.D. Landau, Soviet Phys. JETP 20(12), 1064 (1950)

    CAS  Google Scholar 

  52. J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28(2), 258 (1958)

    CAS  Google Scholar 

  53. S.M. Allen, J.W. Cahn, Acta Metall. 27(6), 1085 (1979)

    CAS  Google Scholar 

  54. T. Yang, B. Wang, J.-M. Hu, L.-Q. Chen, Phys. Rev. Lett. 124, 107601 (2020)

  55. K. Ji, A.J. Clarke, J.T. McKeown, A. Karma, MRS Bull. 49(6) (2024). https://doi.org/10.1557/s43577-024-00717-6

  56. D. Wang, J. Zhu, T. Zhang, Y. Wang, MRS Bull. 49(6) (2024). https://doi.org/10.1557/s43577-024-00721-w

  57. I. Steinbach, M. Uddagiri, H. Salama, M.A. Ali, O. Shchyglo, MRS Bull. 49(6) (2024). https://doi.org/10.1557/s43577-024-00715-8

  58. R. Li, Y. Zhang, N. Moelans, V. Yadav, D. Juul Jensen, MRS Bull. 49(6) (2024). https://doi.org/10.1557/s43577-024-00716-7

  59. E. Martínez-Pañeda, MRS Bull. 49(6) (2024). https://doi.org/10.1557/s43577-024-00715-8

  60. Y. Zhao, T. **n, S. Tang, H. Wang, X. Fang, H. Hou, MRS Bull. 49(6)(2024). https://doi.org/10.1557/s43577-024-00720-x

  61. F. Li, B. Wang, L.-Q. Chen, MRS Bull. 49(6) (2024). https://doi.org/10.1557/s43577-024-00692-y

  62. J.-M. Hu, MRS Bull. 49(6) (2024). https://doi.org/10.1557/s43577-024-00699-5

  63. W.B. Andrews, K. Thornton, MRS Bull. 49(6) 2024. https://doi.org/10.1557/s43577-024-00732-7

  64. Y. Shi, F. Xue, L.-Q. Chen, Europhys. Lett. 120, 4 (2017)

    Google Scholar 

  65. Y. Shi, V. Gopalan, L.-Q. Chen, Phys. Rev. B 107, 20 (2023)

    Google Scholar 

  66. Y.U. Wang, Y.M. **, A.M. Cuitiño, A.G. Khachaturyan, Acta Mater. 49(10), 1847 (2001)

  67. S.Y. Hu, Y.L. Li, L.-Q. Chen, J. Appl. Phys. 94(4), 2542 (2003)

    CAS  Google Scholar 

  68. C. Shen, Y. Wang, Acta Mater. 52(3), 683 (2004)

    CAS  Google Scholar 

  69. L.Y. Liang, L.-Q. Chen, Appl. Phys. Lett. 105, 26 (2014)

    Google Scholar 

  70. S.G. Kim, Acta Mater. 55(13), 4391 (2007)

    CAS  Google Scholar 

  71. B. Echebarria, R. Folch, A. Karma, M. Plapp, Phys. Rev. E 70, 061604 (2004)

  72. A. Karma, W.J. Rappel, Phys. Rev. E 53(4), R3017 (1996)

    CAS  Google Scholar 

  73. J. Zhang, A.F. Chadwick, D.L. Chopp, P.W. Voorhees, NPJ Comput. Mater. 9, 166 (2023)

  74. V. Feyen, N. Moelans, Acta Mater. 256, 119087 (2023)

    CAS  Google Scholar 

  75. M. Plapp, Phys. Rev. E 84, 3 (2011)

    Google Scholar 

  76. A.F. Chadwick, P.W. Voorhees, Acta Mater. 211, 116862 (2021)

    CAS  Google Scholar 

  77. A. Finel, Y. Le Bouar, B. Dabas, B. Appolaire, Y. Yamada, T. Mohri, Phys. Rev. Lett. 121, 025501 (2018)

  78. R. Darabi, E. Azinpour, A. Reis, J.C. de Sa, Appl. Math. Model. 122, 572 (2023)

  79. N. Moelans, Acta Mater. 59(3), 1077 (2011)

    CAS  Google Scholar 

  80. J. Eiken, B. Böttger, I. Steinbach, Phys. Rev. E 73, 6 (2006)

    Google Scholar 

  81. A. Malik, J. Odqvist, L. Höglund, S. Hertzman, J. Ågren, Metall. Mater. Trans. A 48(10), 4914 (2017)

  82. N. Warnken, D. Ma, A. Drevermann, R.C. Reed, S.G. Fries, I. Steinbach, Acta Mater. 57(19), 5862 (2009)

  83. W. Yan, J. Melville, V. Yadav, L. Yang, K. Everett,  M.S. Kesler, A.R. Krause, M.R. Tonks, J.B. Harley, Mater. Des. 222, 111032 (2022)

  84. V. Oommen, K. Shukla, S. Goswami, R. Dingreville, G.E. Karniadakis, NPJ Comput. Mater. 8, 190 (2022)

  85. Y.A. Coutinho, N. Vervliet, L. De Lathauwer, N. Moelans, NPJ Comput. Mater. 6, 2 (2020)

  86. Y.C. Yabansu, P. Steinmetz, J. Hötzer, S.R. Kalidindi, B. Nestler, Acta Mater. 124, 182 (2017)

Download references

Funding

The authors thank X. Cheng for preparing the figure of this editorial. L.-Q.C.’s effort is supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under Award No. DE-SC0020145 as part of the Computational Materials Sciences Program. L.-Q.C. also appreciates the generous support from the Donald W. Hamer Foundation through a Hamer Professorship at Penn State. N.M. acknowledges the support by the HORIZON EUROPE European Research Council (101123107—μTWIN).

Author information

Authors and Affiliations

Authors

Contributions

L.-Q.C. and N.M. co-wrote the editorial.

Corresponding author

Correspondence to Nele Moelans.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, LQ., Moelans, N. Phase-field method of materials microstructures and properties. MRS Bulletin 49, 551–555 (2024). https://doi.org/10.1557/s43577-024-00724-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-024-00724-7

Keywords

Navigation