Log in

Tunable auxeticity in hydrogenated carbon nanotube origami metamaterial

  • Impact Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Inspired by the origami architecture and the progress in the functionalization of carbon-based nanomaterials, we design a carbon nanotube origami (CNT-O) metamaterial with the assistance of hydrogenation and by utilizing molecular dynamics simulation. The mechanical properties, including stiffness, ultimate strength, failure strain, and Poisson’s ratio, are systematically studied. Our findings show that the mechanical properties of CNT-O can be tuned and programmed by altering the underlying topological parameters and adopting surface functionalization. We resort to computational simulation, theoretical analysis, and experimentation to demonstrate that an extremely broad range of strain-dependent and scale-independent negative Poisson’s ratio can be achieved for nanoarchitected metamaterials, mainly driven by the kinematics of the folding/unfolding in origamis. The proposed origami strategy imparts a platform for designing the next generation of low-dimensional nanomaterials (e.g., graphene and CNT) with highly tunable auxeticity.

Impact statement

Carbon nanotubes (CNTs), the classic one-dimensional material, were uncovered in 1991 and reported to be made out of a single graphene layer later in 1993. Since these discoveries, the carbon-based materials have attracted intensive research interest due to their outstanding thermo-electro-mechanical properties. To expand their range of applications and overcome their shortcomings such as brittleness and low-dimensional feature, many engineering strategies have been proposed to modify their properties. Inspired by the ancient art of paper folding, we first construct the CNT origami with a Miura-ori tessellation via surface functionalization using hydrogen atoms and then resort to molecular dynamics simulation, theoretical analysis, and experimental test to demonstrate that the origami strategy can provide a platform for designing CNTs with enhanced stretchability, high strength, and scale-independent strain-dependent negative Poisson’s ratio. More specifically, the mechanical properties of CNT origamis can be tuned and programmed by altering the folding width and topological parameters of Miura-ori patterns. Our findings provide new opportunities for the realization of low-dimensional architected nanomaterials capable of achieving tunable mechanical properties and auxeticity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

The data will be made available upon reasonable request.

References

  1. Y. Gogotsi, MRS Bull. 40(12), 1110 (2015)

    Article  CAS  Google Scholar 

  2. S.Y. Kim, J.C. Lee, G. Seo, J.H. Woo, M. Lee, J. Nam, J.Y. Sim, H.R. Kim, E.C. Park, S. Park, Small Sci. 2, 2100111 (2022)

    Article  CAS  Google Scholar 

  3. Z. Komeily-Nia, L.-T. Qu, J.-L. Li, Small Sci. 1(2), 2000026 (2020). https://doi.org/10.1002/smsc.202000026

    Article  Google Scholar 

  4. B. Ni, D. Steinbach, Z. Yang, A. Lew, B. Zhang, Q. Fang, M.J. Buehler, J. Lou, MRS Bull. 47(8), 848 (2022)

    Article  Google Scholar 

  5. T. Cui, S. Mukherjee, P.M. Sudeep, G. Colas, F. Najafi, J. Tam, P.M. Ajayan, C.V. Singh, Y. Sun, T. Filleter, Nat. Mater. 19, 405 (2020). https://doi.org/10.1038/s41563-019-0586-y

    Article  CAS  Google Scholar 

  6. A. Kis, G. Csanyi, J.P. Salvetat, T.N. Lee, E. Couteau, A.J. Kulik, W. Benoit, J. Brugger, L. Forro, Nat. Mater. 3, 153 (2004)

    Article  CAS  Google Scholar 

  7. M. Guo, Y. Qian, H. Qi, K. Bi, Y. Chen, Carbon 157, 185 (2020)

    Article  CAS  Google Scholar 

  8. T.W. Odom, J.-L. Huang, P. Kim, C.M. Lieber, Nature 391, 62 (1998)

    Article  CAS  Google Scholar 

  9. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992)

    Article  CAS  Google Scholar 

  10. J. Wu, H. Ma, P. Yin, Y. Ge, Y. Zhang, L. Li, H. Zhang, H. Lin, Small Sci. 1(4), 2000053 (2021). https://doi.org/10.1002/smsc.202000053

    Article  CAS  Google Scholar 

  11. A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset, Carbon 39, 507 (2001)

    Article  CAS  Google Scholar 

  12. C. Zhang, A. Akbarzadeh, W. Kang, J. Wang, A. Mirabolghasemi, Carbon 131, 38 (2018)

    Article  CAS  Google Scholar 

  13. J. Cai, A. Akbarzadeh, Mater. Des. 206, 109811 (2021). https://doi.org/10.1016/j.matdes.2021.109811

    Article  CAS  Google Scholar 

  14. J. Cai, H. Chen, Y. Li, A. Akbarzadeh, Small Sci. 2(12), 2270024 (2022). https://doi.org/10.1002/smsc.202270024

    Article  Google Scholar 

  15. H. Zhan, G. Zhang, J.M. Bell, V.B.C. Tan, Y. Gu, Nat. Commun. 11, 1905 (2020)

    Article  CAS  Google Scholar 

  16. E. Pop, V. Varshney, A.K. Roy, MRS Bull. 37(12), 1273 (2012)

    Article  CAS  Google Scholar 

  17. G.S. Jung, M.J. Buehler, Nano Lett. 18, 4845 (2018)

    Article  CAS  Google Scholar 

  18. Z. Yang, M.J. Buehler, Small Methods 6, 84 (2022)

    Google Scholar 

  19. A. Pedrielli, S. Taioli, G. Garberoglio, N.M. Pugno, Carbon 132, 766 (2018)

    Article  CAS  Google Scholar 

  20. Y. Zhu, Y. Wang, B. Wu, Z. He, J. **a, H. Wu, Nano Lett. 21, 8401 (2021)

    Article  CAS  Google Scholar 

  21. T.C. Shyu, P.F. Damasceno, P.M. Dodd, A. Lamoureux, L. Xu, M. Shlian, M. Shtein, S.C. Glotzer, N.A. Kotov, Nat. Mater. 14, 785 (2015)

    Article  CAS  Google Scholar 

  22. M. Schenk, S.D. Guest, Proc. Natl. Acad. Sci. U.S.A. 110, 3276 (2013)

    Article  CAS  Google Scholar 

  23. L. Yuan, H. Dai, J. Song, J. Ma, Y. Chen, Mater. Des. 189, 108494 (2020)

    Article  Google Scholar 

  24. S. Li, H. Fang, S. Sadeghi, P. Bhovad, K.W. Wang, Adv. Mater. 31, e1805282 (2019)

    Article  Google Scholar 

  25. S.J.P. Callens, A.A. Zadpoor, Mater. Today 21, 241 (2018)

    Article  Google Scholar 

  26. P.M. Reis, F. Lopez Jimenez, J. Marthelot, Proc. Natl. Acad. Sci. U.S.A. 112, 12234 (2015)

    Article  CAS  Google Scholar 

  27. J. Cai, E. Estakhrianhaghighi, A. Akbarzadeh, Carbon 191(5696), 610 (2022). https://doi.org/10.1016/j.carbon.2022.02.008

    Article  CAS  Google Scholar 

  28. Z.Y. Wei, Z.V. Guo, L. Dudte, H.Y. Liang, L. Mahadevan, Phys. Rev. Lett. 110, 215501 (2013)

    Article  CAS  Google Scholar 

  29. E. Boatti, N. Vasios, K. Bertoldi, Adv. Mater. 29, 1700360 (2017)

    Article  Google Scholar 

  30. D. Melancon, B. Gorissen, C.J. Garcia-Mora, C. Hoberman, K. Bertoldi, Nature 592, 545 (2021)

    Article  CAS  Google Scholar 

  31. Z. Zhai, Y. Wang, K. Lin, L. Wu, H. Jiang, Sci. Adv. 6(47), eabe2000 (2020). https://doi.org/10.1126/sciadv.abe2000

    Article  Google Scholar 

  32. B. Treml, A. Gillman, P. Buskohl, R. Vaia, Proc. Natl. Acad. Sci. U.S.A. 115, 6916 (2018)

    Article  CAS  Google Scholar 

  33. B.N. Khare, M. Meyyappan, J. Kralj, P. Wilhite, M. Sisay, H. Imanaka, J. Koehne, C.W. Baushchlicher, Appl. Phys. Lett. 81, 5237 (2002)

    Article  CAS  Google Scholar 

  34. D.C. Elias, R.R. Nair, T.M. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Science 323, 610 (2009)

    Article  CAS  Google Scholar 

  35. B.N. Khare, M. Meyyappan, A.M. Cassell, C.V. Nguyen, J. Han, Nano Lett. 2, 73 (2001)

    Article  Google Scholar 

  36. S. Pekker, J.P. Salvetat, E. Jakab, J.M. Bonard, L. Forró, J. Phys. Chem. B 105, 7938 (2001)

    Article  CAS  Google Scholar 

  37. G. Zhang, P. Qi, X. Wang, Y. Lu, D. Mann, X. Li, H. Dai, J. Am. Chem. Soc. 128, 6026 (2006)

    Article  CAS  Google Scholar 

  38. A.V. Talyzin, S. Luzan, I.V. Anoshkin, A.G. Nasibulin, H. Jiang, E.I. Kauppinen, V.M. Mikoushkin, V.V. Shnitov, D.E. Marchenko, D. Noreus, ACS Nano 5, 5132 (2011)

    Article  CAS  Google Scholar 

  39. Z. Sun, C.L. Pint, D.C. Marcano, C. Zhang, J. Yao, G. Ruan, Z. Yan, Y. Zhu, R.H. Hauge, J.M. Tour, Nat. Commun. 2, 559 (2011)

    Article  Google Scholar 

  40. S. Plimpton, J. Comput. Phys. 117(1), 1 (1995)

    Article  CAS  Google Scholar 

  41. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  Google Scholar 

  42. F. Müller-Plathe, J. Chem. Phys. 106, 6082 (1997)

    Article  Google Scholar 

  43. S. Zhu, T. Li, ACS Nano 8, 2864 (2014)

    Article  CAS  Google Scholar 

  44. D.T. Ho, V.H. Ho, V. Babar, S.Y. Kim, U. Schwingenschlogl, Nanoscale 12, 10172 (2020)

    Article  CAS  Google Scholar 

  45. J. Mu, C. Hou, H. Wang, Y. Li, Q. Zhang, M. Zhu, Sci. Adv. 1, e1500533 (2015)

    Article  Google Scholar 

  46. L. Liu, Y. Liu, X. Li, N. Liu, B. Cui, X. Huang, Phys. Status Solidi B 256, 1900095 (2019)

    Article  CAS  Google Scholar 

  47. Q. Lu, M. Arroyo, R. Huang, J. Phys. D Appl. Phys. 42, 102002 (2009)

    Article  Google Scholar 

  48. X. Shi, B. Peng, N.M. Pugno, H. Gao, Appl. Phys. Lett. 100, 191913 (2012)

    Article  Google Scholar 

  49. K. Liu, P.P. Pratapa, D. Misseroni, T. Tachi, G.H. Paulino, Adv. Mater. 34, e2107998 (2022)

    Article  Google Scholar 

  50. M. Eidini, G.H. Paulino, Sci. Adv. 1, e1500224 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This research was undertaken, in part, thanks to funding from the Canada Research Chairs program to A.H.A. in Multifunctional Metamaterials. A.H.A. also acknowledges the financial support by the Natural Sciences and Engineering Research Council of Canada through NSERC Discovery Grant (RGPIN-2022-04493) and the Canada Foundation for Innovation (CFI) through the John R. Evans Leaders Fund. J.C. acknowledges the financial support provided by the China Scholarship Council (File No. 201909370077), Quebec Research Fund - Nature and Technologies (FRQNT) doctoral awards (B2X), and McGill University. This research was enabled by support from Calcul Québec and Compute Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolhamid Akbarzadeh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 975 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Shahryari, B. & Akbarzadeh, A. Tunable auxeticity in hydrogenated carbon nanotube origami metamaterial. MRS Bulletin 49, 38–48 (2024). https://doi.org/10.1557/s43577-023-00545-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-023-00545-0

Keywords

Navigation