Log in

Lithium Dendrite Inhibition on Post-Charge Anode Surface: The Kinetics Role

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We report experiments and molecular dynamics calculations on the kinetics of electrodeposited lithium dendrites relaxation as a function of temperature and time. We found that the experimental average length of dendrite population decays via stretched exponential functions of time toward limiting values that depend inversely on temperature. The experimental activation energy derived from initial rates as Ea∼ 6-7 kcal/mole, which is closely matched by MD calculations, based on the ReaxFF force field for metallic lithium. Simulations reveal that relaxation proceeds in several steps via increasingly larger activation barriers. Incomplete relaxation at lower temperatures is therefore interpreted a manifestation of cooperative atomic motions into discrete topologies that frustrate monotonic progress by ‘caging’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M. and J.M. Tarascon, Building better batteries. Nature, 2008. 451(7179): p. 652–657.

    Article  CAS  Google Scholar 

  2. Aryanfar, A., et al., Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries. Physical Chemistry Chemical Physics, 2014. 16(45): p. 24965–24970.

    Article  CAS  Google Scholar 

  3. Aryanfar, A., et al., Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations. The Journal of Physical Chemistry Letters, 2014. 5: p. 1721–1726.

    Article  CAS  Google Scholar 

  4. Mayers, M.Z., J.W. Kaminski, and T.F. Miller III, Suppression of Dendrite Formation via Pulse Charging in Rechargeable Lithium Metal Batteries. The Journal of Physical Chemistry C, 2012. 116(50): p. 26214–26221.

    Article  CAS  Google Scholar 

  5. Brissot, C., et al., In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer-electrolyte/lithium cells. Journal of the Electrochemical Society, 1999. 146(12): p. 4393–4400.

    Article  CAS  Google Scholar 

  6. F. Orsini, A.D.P., B. Beaudoin, J.M. Tarascon, M. Trentin, N. Langenhuisen, E.D. Beer, P. Notten, In Situ Scanning Electron Microscopy (SEM) observation of interfaces with plastic lithium batteries. Journal of power sources, 1998. 76: p. 19–29.

    Article  CAS  Google Scholar 

  7. Monroe, C. and J. Newman, Dendrite growth in lithium/polymer systems - A propagation model for liquid electrolytes under galvanostatic conditions. Journal of the Electrochemical Society, 2003. 150(10): p. A1377-A1384.

    Article  CAS  Google Scholar 

  8. Liu, X.H., et al., Lithium fiber growth on the anode in a nanowire lithium ion battery during charging. Applied Physics Letters, 2011. 98(18).

    Google Scholar 

  9. Monroe, C. and J. Newman, The effect of interfacial deformation on electrodeposition kinetics. Journal of the Electrochemical Society, 2004. 151(6): p. A880-A886.

    Article  CAS  Google Scholar 

  10. Nishida, T., et al., Optical observation of Li dendrite growth in ionic liquid. Electrochimica Acta, 2013.

  11. Howlett, P.C., D.R. MacFarlane, and A.F. Hollenkamp, A sealed optical cell for the study of lithium-electrode electrolyte interfaces. Journal of Power Sources, 2003. 114(2): p. 277–284.

    Article  CAS  Google Scholar 

  12. Schweikert, N., et al., Suppressed lithium dendrite growth in lithium batteries using ionic liquid electrolytes: Investigation by electrochemical impedance spectroscopy, scanning electron microscopy, and in situ Li-7 nuclear magnetic resonance spectroscopy. Journal of Power Sources, 2013. 228: p. 237–243.

    Article  CAS  Google Scholar 

  13. Crowther, O. and A.C. West, Effect of electrolyte composition on lithium dendrite growth. Journal of the Electrochemical Society, 2008. 155(11): p. A806-A811.

    Article  CAS  Google Scholar 

  14. Brissot, C., et al., Dendritic growth mechanisms in lithium/polymer cells. Journal of Power Sources, 1999. 81: p. 925–929.

    Article  Google Scholar 

  15. Seong, I.W., et al., The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode. Journal of Power Sources, 2008. 178(2): p. 769–773.

    Article  CAS  Google Scholar 

  16. Stone, G., et al., Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries. Journal of The Electrochemical Society, 2012. 159(3): p. A222-A227.

    Article  CAS  Google Scholar 

  17. Steiger, J., D. Kramer, and R. Mönig, Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution. Electrochimica Acta, 2014.

  18. Harry, K.J., et al., Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat Mater, 2014. 13(1): p. 69–73.

    Article  CAS  Google Scholar 

  19. Steiger, J., D. Kramer, and R. Monig, Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. Journal of Power Sources, 2014. 261: p. 112–119.

    Article  CAS  Google Scholar 

  20. Chazalviel, J.N., Electrochemical Aspects of the Generation of Ramified Metallic Electrodeposits. Physical Review A, 1990. 42(12): p. 7355–7367.

    Article  CAS  Google Scholar 

  21. Zhang, H.-W., et al. Understanding and Predicting Li Dendrite Formation in Li-Ion Batteries: Phase Field Model. in Meeting Abstracts. 2014. The Electrochemical Society.

  22. Goodenough, J.B. and Y. Kim, Challenges for rechargeable batteries. Journal of Power Sources, 2011. 196(16): p. 6688–6694.

    Article  CAS  Google Scholar 

  23. Goodenough, J.B. and K.-S. Park, The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society, 2013. 135(4): p. 1167–1176.

    Article  CAS  Google Scholar 

  24. Park, H.E., C.H. Hong, and W.Y. Yoon, The effect of internal resistance on dendritic growth on lithium metal electrodes in the lithium secondary batteries. Journal of Power Sources, 2008. 178(2): p. 765–768.

    Article  CAS  Google Scholar 

  25. Diggle, J., A. Despic, and J.M. Bockris, The mechanism of the dendritic electrocrystallization of zinc. Journal of The Electrochemical Society, 1969. 116(11): p. 1503–1514.

    Article  CAS  Google Scholar 

  26. Brissot, C., et al., Concentration measurements in lithium/polymer-electrolyte/lithium cells during cycling. Journal of Power Sources, 2001. 94(2): p. 212–218.

    Article  CAS  Google Scholar 

  27. Bard, A.J. and L.R. Faulkner, Electrochemical methods: fundamentals and applications. 1980. 2 New York: Wiley, 1980.

    Google Scholar 

  28. Akolkar, R., Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. Journal of Power Sources, 2014. 246: p. 84–89.

    Article  CAS  Google Scholar 

  29. Bhattacharyya, R., et al., In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nature Materials, 2010. 9(6): p. 504–510.

    Article  CAS  Google Scholar 

  30. Harry, K.J., et al., Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nature materials, 2014. 13(1): p. 69–73.

    Article  CAS  Google Scholar 

  31. Aryanfar, A., et al., Thermal relaxation of lithium dendrites. Physical Chemistry Chemical Physics, 2015. 17(12): p. 8000–8005.

    Article  CAS  Google Scholar 

  32. Aryanfar, A., Method and device for dendrite research and discovery in batteries. 2014, US Patent App. 14/201,979.

  33. Chenoweth, K., A.C. van Duin, and W.A. Goddard, ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. The Journal of Physical Chemistry A, 2008. 112(5): p. 1040–1053.

    Article  CAS  Google Scholar 

  34. Van Duin, A.C.T., et al., ReaxFF: a reactive force field for hydrocarbons. The Journal of Physical Chemistry A, 2001. 105(41): p. 9396–9409.

    Article  Google Scholar 

  35. Martyna, G.J., D.J. Tobias, and M.L. Klein, Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 1994. 101(5): p. 4177–4189.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Aryanfar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aryanfar, A., Cheng, T., Merinov, B.V. et al. Lithium Dendrite Inhibition on Post-Charge Anode Surface: The Kinetics Role. MRS Online Proceedings Library 1774, 31–39 (2015). https://doi.org/10.1557/opl.2015.745

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.745

Navigation