Log in

Effect of Nickel Silicide Induced Dopant Segregation on Vertical Silicon Nanowire Diode Performance

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In this work, Dopant Segregated Schottky Barrier (DSSB) and Schottky Barrier (SB) vertical silicon nanowire (VSiNW) diodes were fabricated on p-type Si substrate using CMOS- compatible processes to investigate the effects of segregated dopants at the silicide/silicon interface and different annealing processes on nickel silicide formation in DSSB VSiNW diodes. With segregated dopants at the silicide/silicon interface, VSiNW diodes showed higher on- current, due to an enhanced carrier tunneling, and much lower leakage current. This can be attributed to the altered energy bands caused by the accumulated Arsenic dopants at the interface. Moreover, DSSB VSiNW diodes also gave ideality factor much closer to unity and exhibited lower electron SBH (ΦBn) than SB VSiNW diodes. This proved that interfacial accumulated dopants could impede the inhomogeneous nature of the Schottky diodes and simultaneously, minimize the effect of Fermi level pinning and ionization of surface defect states. Comparing the impact of different silicide formation annealing using DSSB VSiNW diodes, the 2-step anneal process reduces the silicide intrusion length within the SiNW by ~ 5X and the silicide interface was smooth along the (100) direction. Furthermore, the 2-step DSSB VSiNW diode also exhibited much lower leakage current and an ideality factor much closer to unity, as compared to 1-step DSSB VSiNW diode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Song, H. Zhou, Q. Xu, J. Niu, J. Yan, C. Zhao, H. Zhong, IEEE Electron Device Lett., 31, 1377 (2010).

    Article  CAS  Google Scholar 

  2. E. J. Tan, K. L. Pey, N. Singh, G. Q. Lo, D. Z. Chi, Y. K. Chin, L. J. Tang, P. S. Lee, C. K. F. Ho, IEEE Electron Device Lett., 29, 902 (2008).

    Article  CAS  Google Scholar 

  3. Y. K. Chin, K. L. Pey, N. Singh, G. Q. Lo, K. H. Tan, C. Y. Ong, L. H. Tan, IEEE Electron Device Lett., 30, 843 (2009).

    Article  CAS  Google Scholar 

  4. D.-L. Kwong, X. Li, Y. Sun, G. Ramanathan, Z. X. Chen, S. M. Wong, Y. Li, N. S. Shen, K. Buddharaju, Y. H. Yu, S. J. Lee, N. Singh, and G. Q. Lo, J. Nanotechnol., vol. 2012, Article ID 492121, 21 pages, 2012.

    Article  Google Scholar 

  5. K. N. Tu, R. D. Thompson, B. Y. Tsaur, Appl. Phys. Lett., 38, 626 (1981).

    Article  CAS  Google Scholar 

  6. J. R. Kim, H. Oh, H. M. So, J. J. Kim, J. Kim, C. J. Lee, S. C. Lyu, Nanotechnology, 13, 701 (2002).

    Article  CAS  Google Scholar 

  7. R. T. Tung, Phys. Rev. Lett., 52, 461 (1984).

    Article  CAS  Google Scholar 

  8. I. P. Batra, S. Ciraci, Phys. Rev. B: Condens. Matter Mater. Phys., 33, 4312 (1986).

    Article  CAS  Google Scholar 

  9. H. -Y. Chen, C. -Yi Lin, M. -C. Chen, C. -C. Huang and C. -H. Chien, J. Electrochem. Soc., 158, H840 (2011).

    Article  CAS  Google Scholar 

  10. Z. Qiu, Z. Zhang, M. Östling, S. -L. Zhang, IEEE Trans. Electron Devices, 55, 396 (2008).

    Article  CAS  Google Scholar 

  11. J. Knoch, M. Zhang, S. Feste and S. Mantl, Microelectron. Eng., 84, 2563 (2007).

    Article  CAS  Google Scholar 

  12. C. Lavoie, F.M. d'Heurle, C. Detavernier, C. Cabral Jr., Microelectron. Eng., 70, 144 (2003).

    Article  CAS  Google Scholar 

  13. J. Foggiato, W. S. Yoo, M. Ouaknine, T. Murakami, T. Fukada, Mater. Sci. Eng., B, 56, 114–115 (2004).

    Google Scholar 

  14. Li Geng, Magyari-Kope, B. and Nishi, Y., IEEE Electron Device Lett., 30, 963 (2009).

    Article  CAS  Google Scholar 

  15. T. Yun, J. Yu-Long, C. Yu, L. Fang, and L. Bing-Zong, Semiconductor Science and Technology, 17, 83 (2002).

    Article  Google Scholar 

  16. J. P. Lu, D. S. Miles, J. DeLoach, D. F. Yue, P. J. Chen, T. Bonifield, S. Crank, S. F. Yu, F. Mehrad, Y. Obeng, D. A. Ramappa, D. Corum, R. L. Guldi, L.S. Robertson, X. Liu, L. H. Hall, Y. Q. Xu, B. Y. Lin, A. J. Griffin, Jr., F. S. Johnson, T. Grider, D. Mercer and C. Montgomery, International Workshop on Junction Technology 2006, 127 (2006).

    Google Scholar 

  17. H. Arai, H. Kamimura, S. Sato, K. Kakushima, P. Ahmet, K. Tsutsui, N. Sugii, K. Natori, T. Hattori, and H. Iwai, “Annealing Reaction for Ni Silicidaton of Si Nanowire,” ECS Transactions, 25, 447 (2009).

    Article  CAS  Google Scholar 

  18. W. Lu, K. L. Pey, N. Singh, K. C. Leong, C. L. Gan and C. S. Tan, IEEE Electron Device Lett., submitted (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, W., Pey, K.L., Singh, N. et al. Effect of Nickel Silicide Induced Dopant Segregation on Vertical Silicon Nanowire Diode Performance. MRS Online Proceedings Library 1439, 89–94 (2012). https://doi.org/10.1557/opl.2012.845

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2012.845

Navigation