Log in

Advances in light-emitting metal-halide perovskite nanocrystals

  • Halide Perovskite Opto- and Nanoelectronic Materials and Devices
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Metal-halide perovskites, in particular their nanocrystal forms, have emerged as a new generation of light-emitting materials with exceptional optical properties, including narrow emissions covering the whole visible region with high photoluminescence quantum efficiencies of up to near-unity. Remarkable progress has been achieved over the last few years in the areas of materials development and device integration. A variety of synthetic approaches have been established to precisely control the compositions and microstructures of metal-halide perovskite nanocrystals (NCs) with tunable bandgaps and emission colors. The use of metal-halide perovskite NCs as active materials for optoelectronic devices has been extensively explored. Here, we provide a brief overview of recent advances in the development and application of metal-halide perovskite NCs. From color tuning via ion exchange and manipulation of quantum size effects, to stability enhancement via surface passivation, new chemistry for materials development is discussed. In addition, processes in optoelectronic devices based on metal-halide perovskite NCs, in particular, light-emitting diodes and radiation detectors, will be introduced. Opportunities for future research in metal-halide perovskite NCs are provided as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).

    Google Scholar 

  2. W.-J. Yin, T. Shi, Y. Yan, Appl. Phys. Lett. 104, 063903 (2014).

    Google Scholar 

  3. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J.T.-W. Wang, S.D. Stranks, H.J. Snaith, R.J. Nicholas, Nat. Phys. 11, 582 (2015).

    Google Scholar 

  4. H. Huang, L. Polavarapu, J.A. Sichert, A.S. Susha, A.S. Urban, A.L. Rogach, NPG Asia Mater. 8, e328 (2016).

    Google Scholar 

  5. L.C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram, G. Mínguez Espallargas, H.J. Bolink, R.E. Galian, J. Pérez-Prieto, J. Am. Chem. Soc. 136, 850 (2014).

    Google Scholar 

  6. L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, M.V. Kovalenko, Nano Lett. 15, 3692 (2015).

    Google Scholar 

  7. G. Nedelcu, L. Protesescu, S. Yakunin, M.I. Bodnarchuk, M.J. Grotevent, M.V. Kovalenko, Nano Lett. 15, 5635 (2015).

    Google Scholar 

  8. M.A. Uddin, R.L. Calabro, D.Y. Kim, K.R. Graham, Nanoscale 10, 16919 (2018).

    Google Scholar 

  9. Q.A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, L. Manna, J. Am. Chem. Soc. 137, 10276 (2015).

    Google Scholar 

  10. A. Yan, Y. Guo, C. Liu, Z. Deng, X. Zhao, Nanoscale Res. Lett. 13, 185 (2018).

    Google Scholar 

  11. H. Liu, Z. Liu, W. Xu, L. Yang, Y. Liu, D. Yao, D. Zhang, H. Zhang, B. Yang, ACS Appl. Mater. Interfaces 11, 14256 (2019).

    Google Scholar 

  12. D. Parobek, Y. Dong, T. Qiao, D. Rossi, D.H. Son, J. Am. Chem. Soc. 139, 4358 (2017).

    Google Scholar 

  13. Y.J. Yoon, K.T. Lee, T.K. Lee, S.H. Kim, Y.S. Shin, B. Walker, S.Y. Park, J. Heo, J. Lee, S.K. Kwak, G.-H. Kim, J.Y. Kim, Joule 2, 2105 (2018).

    Google Scholar 

  14. L.J. Xu, M. Worku, Q. He, H. Lin, C. Zhou, B. Chen, X. Lin, Y. **n, B. Ma, J. Phys. Chem. Lett. 10, 5836 (2019).

    Google Scholar 

  15. Q.A. Akkerman, S.G. Motti, A.R. Srimath Kandada, E. Mosconi, V. D’Innocenzo, G. Bertoni, S. Marras, B.A. Kamino, L. Miranda, F. De Angelis, A. Petrozza, M. Prato, L. Manna, J. Am. Chem. Soc. 138, 1010 (2016).

    Google Scholar 

  16. J.A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer, K.Z. Milowska, R. García Cortadella, B. Nickel, C. Cardenas-Daw, J.K. Stolarczyk, A.S. Urban, J. Feldmann, Nano Lett. 15, 6521 (2015).

    Google Scholar 

  17. Z. Yuan, Y. Shu, Y. **n, B. Ma, Chem. Commun. 52, 3887 (2016).

    Google Scholar 

  18. A. Pan, B. He, X. Fan, Z. Liu, J.J. Urban, A.P. Alivisatos, L. He, Y. Liu, ACS Nano 10, 7943 (2016).

    Google Scholar 

  19. M. Worku, Y. Tian, C. Zhou, H. Lin, M. Chaaban, L.-J. Xu, Q. He, D. Beery, Y. Zhou, X. Lin, Y.-F. Su, Y. **n, B. Ma, Sci. Adv. 6, eaaz5961 (2020).

    Google Scholar 

  20. F. Zhang, H. Zhong, C. Chen, X.-g. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano 9, 4533 (2015).

    Google Scholar 

  21. Y. Kim, E. Yassitepe, O. Voznyy, R. Comin, G. Walters, X. Gong, P. Kanjana-boos, A.F. Nogueira, E.H. Sargent, ACS Appl. Mater. Interfaces 7, 25007 (2015).

    Google Scholar 

  22. Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A.J. Ges-quiere, S.T. Wu, Y. Dong, Adv. Mater. 28, 10710 (2016).

    Google Scholar 

  23. J.C. Yu, A.-Y. Lee, D.B. Kim, E.D. Jung, D.W. Kim, M.H. Song, Adv. Mater. Technol. 2, 1700003 (2017).

    Google Scholar 

  24. Q. Zhou, Z. Bai, W.G. Lu, Y. Wang, B. Zou, H. Zhong, Adv. Mater. 28, 9163 (2016).

    Google Scholar 

  25. Y. Tian, C. Zhou, M. Worku, X. Wang, Y. Ling, H. Gao, Y. Zhou, Y. Miao, J. Guan, B. Ma, Adv. Mater. 30, 1707093 (2018).

    Google Scholar 

  26. L. Zhao, Y.W. Yeh, N.L. Tran, F. Wu, Z. **ao, R.A. Kerner, Y.L. Lin, G.D. Scholes, N. Yao, B.P. Rand, ACS Nano 11, 3957 (2017).

    Google Scholar 

  27. J.W. Lee, Y.J. Choi, J.M. Yang, S. Ham, S.K. Jeon, J.Y. Lee, Y.H. Song, E.K. Ji, D.H. Yoon, S. Seo, H. Shin, G.S. Han, H.S. Jung, D. Kim, N.G. Park, ACS Nano 11, 3311 (2017).

    Google Scholar 

  28. L.J. Xu, M. Worku, H. Lin, Z. Xu, Q. He, C. Zhou, H. Zhang, Y. **n, S. Lteif, J. Xue, B. Ma, J. Phys. Chem. Lett. 10, 5923 (2019).

    Google Scholar 

  29. G. Almeida, I. Infante, L. Manna, Science 364, 833 (2019).

    Google Scholar 

  30. B.B. Zhang, S. Yuan, J.P. Ma, Y. Zhou, J.S. Hou, X.Y. Chen, W. Zheng, H.B. Shen, X.C. Wang, B.Q. Sun, O.M. Bakr, L.S. Liao, H.T. Sun, J. Am. Chem. Soc. 141, 15423 (2019).

    Google Scholar 

  31. F. Krieg, S.T. Ochsenbein, S. Yakunin, S. ten Brinck, P. Aellen, A. Suess, B. Clerc, D. Guggisberg, O. Nazarenko, Y. Shynkarenko, S. Kumar, C.J. Shih, I. Infante, M.V. Kovalenko, ACS Energy Lett. 3, 641 (2018).

    Google Scholar 

  32. F. Krieg, Q.K. Ong, M. Burian, G. Rainò, D. Naumenko, H. Amenitsch, A. Süess, M.J. Grotevent, F. Krumeich, M.I. Bodnarchuk, I. Shorubalko, F. Stellacci, M.V. Kovalenko, J. Am. Chem. Soc. 141, 19839 (2019).

    Google Scholar 

  33. V.K. Ravi, R.A. Scheidt, A. Nag, M. Kuno, P.V. Kamat, ACS Energy Lett. 3, 1049 (2018).

    Google Scholar 

  34. L.N. Quan, R. Quintero-Bermudez, O. Voznyy, G. Walters, A. Jain, J.Z. Fan, X.L. Zheng, Z.Y. Yang, E.H. Sargent, Adv. Mater. 29, 1605945 (2017).

    Google Scholar 

  35. Y. He, Y.J. Yoon, Y.W. Harn, G.V. Biesold-McGee, S. Liang, C.H. Lin, V.V. Tsukruk, N. Thadhani, Z.T. Kang, Z.Q. Lin, Sci. Adv. 5, eaax4424 (2019).

    Google Scholar 

  36. B. Liu, Y. Altintas, L. Wang, S. Shendre, M. Sharma, H. Sun, E. Mutlugun, H.V. Demir, Adv. Mater. 32, 1905824 (2019).

    Google Scholar 

  37. D.N. Dirin, B.M. Benin, S. Yakunin, F. Krumeich, G. Raino, R. Frison, M.V. Kovalenko, ACS Nano 13, 11642 (2019).

    Google Scholar 

  38. J.H. Cha, K. Noh, W. Yin, Y. Lee, Y. Park, T.K. Ahn, A. Mayoral, J. Kim, D.Y. Jung, O. Terasaki, J. Phys. Chem. Lett. 10, 2270 (2019).

    Google Scholar 

  39. G.C. Pan, X. Bai, D.W. Yang, X. Chen, P.T. **g, S.N. Qu, L.J. Zhang, D.L. Zhou, J.Y. Zhu, W. Xu, B. Dong, H.W. Song, Nano Lett. 17, 8005 (2017).

    Google Scholar 

  40. C.M. Guvenc, Y. Yalcinkaya, S. Ozen, H. Sahin, M.M. Demir, J. Phys. Chem. C 123, 24865 (2019).

    Google Scholar 

  41. M. Meyns, M. Peralvarez, A. Heuer-Jungemann, W. Hertog, M. Ibanez, R. Nafria, A. Genc, J. Arbiol, M.V. Kovalenko, J. Carreras, A. Cabot, A.G. Kanaras, ACS Appl. Mater. Interfaces 8, 19579 (2016).

    Google Scholar 

  42. H. Huang, B. Chen, Z. Wang, T.F. Hung, A.S. Susha, H. Zhong, A.L. Rogach, Chem. Sci. 7, 5699 (2016).

    Google Scholar 

  43. D. Chen, G. Fang, X. Chen, ACS Appl. Mater. Interfaces 9, 40477 (2017).

    Google Scholar 

  44. T. Xuan, X. Yang, S. Lou, J. Huang, Y. Liu, J. Yu, H. Li, K.L. Wong, C. Wang, J. Wang, Nanoscale 9, 15286 (2017).

    Google Scholar 

  45. C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang, W.W. Yu, Adv. Mater. 28, 10088 (2016).

    Google Scholar 

  46. H.C. Yoon, H. Kang, S. Lee, J.H. Oh, H. Yang, Y.R. Do, ACS Appl. Mater. Interfaces 8, 18189 (2016).

    Google Scholar 

  47. Q. Zhou, Z. Bai, W.G. Lu, Y. Wang, B. Zou, H. Zhong, Adv. Mater. 28, 9163 (2016).

    Google Scholar 

  48. H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J.H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S.H. Im, R.H. Friend, T.-W. Lee, Science 350, 1222 (2015).

    Google Scholar 

  49. Z.G. **ao, R.A. Kerner, L.F. Zhao, N.L. Tran, K.M. Lee, T.W. Koh, G.D. Scholes, B.P. Rand, Nat. Photonics 11, 108 (2017).

    Google Scholar 

  50. J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, Adv. Mater. 27, 7162 (2015).

    Google Scholar 

  51. J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han, Adv. Mater. 29, 1603885 (2017).

    Google Scholar 

  52. J. Song, T. Fang, J. Li, L. Xu, F. Zhang, B. Han, Q. Shan, H. Zeng, Adv. Mater. 30, 1805409 (2018).

    Google Scholar 

  53. X. Shen, Y. Zhang, S.V. Kershaw, T. Li, C. Wang, X. Zhang, W. Wang, D. Li, Y. Wang, M. Lu, Nano Lett. 19, 1552 (2019).

    Google Scholar 

  54. M. Lu, X. Zhang, X. Bai, H. Wu, X. Shen, Y. Zhang, W. Zhang, W. Zheng, H. Song, W.W. Yu, ACS Energy Lett. 3, 1571 (2018).

    Google Scholar 

  55. Z. **ao, R.A. Kerner, N. Tran, L. Zhao, G.D. Scholes, B.P. Rand, Adv. Funct. Mater 29, 1807284 (2019).

    Google Scholar 

  56. T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa, J. Kido, Nat. Photonics 12, 681 (2018).

    Google Scholar 

  57. Y. Liu, J. Cui, K. Du, H. Tian, Z. He, Q. Zhou, Z. Yang, Y. Deng, D. Chen, X. Zuo, Nat. Photonics, 13, 760 (2019).

    Google Scholar 

  58. H. Wang, X. Zhang, Q. Wu, F. Cao, D. Yang, Y. Shang, Z. Ning, W. Zhang, W. Zheng, Y. Yan, Nat. Commun. 10, 665 (2019).

    Google Scholar 

  59. Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A.A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, Nature 561, 88 (2018).

    Google Scholar 

  60. J.H. Heo, D.H. Shin, J.K. Park, D.H. Kim, S.J. Lee, S.H. Im, Adv. Mater. 30, 1801743 (2018).

    Google Scholar 

  61. Y. Zhang, R. Sun, X. Ou, K. Fu, Q. Chen, Y. Ding, L.-J. Xu, L. Liu, Y. Han, A.V. Malko, ACS Nano 13, 2520 (2019).

    Google Scholar 

  62. F. Cao, D. Yu, W. ma, X. Xu, B. Cai, Y. Yang, S. Liu, L. He, Y. Ke, S. Lan, K.-L. Choy, H. Zeng, ACS Nano (2019), doi:10.1021/acsnano.9b06114.

Download references

Acknowledgments

The authors acknowledge the support of the National Science Foundation (DMR-1709116, ECCS-1912911), the Air Force Office of Scientific Research (AFOSR-17RT0906), and the Florida State University Office of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-** Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, LJ., Worku, M., He, Q. et al. Advances in light-emitting metal-halide perovskite nanocrystals. MRS Bulletin 45, 458–466 (2020). https://doi.org/10.1557/mrs.2020.143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.143

Navigation