Log in

Three-dimensionally printed cellular architecture materials: perspectives on fabrication, material advances, and applications

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) printing generates cellular architected metamaterials with complex geometries by introducing controlled porosity. Their ordered architecture, imitative from the hierarchical high-strength structure in nature, defines the mechanical properties that can be coupled with other properties such as the acoustic, thermal, or biologic response. Recent progress in the field of 3D architecture materials have advanced that enables for design of lightweight materials with high strength and stiffness at low densities. Applications of these materials have been identified in the fields of ultra-lightweight structures, thermal management, electrochemical devices, and high absorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. L. Valdevit, A.J. Jacobsen, J.R. Greer, and W.B. Carter: Protocols for the optimal design of multi-functional cellular structures: from hypersonics to micro-architected materials. J. Am. Ceram. Soc. 94, 15 (2011).

    Google Scholar 

  2. K. Wang, Y. Zhao, Y.-H. Chang, Z. Qian, C. Zhang, B. Wang, M.A. Vannan, and M.J. Wang: Controlling the mechanical behavior of dual-material 3D printed meta-materials for patient-specific tissue-mimicking phantoms. Mater. Des. 90, 704 (2016).

    CAS  Google Scholar 

  3. L.E. Murr, S.M. Gaytan, F. Medina, H. Lopez, E. Martinez, B.I. Machado, D.H. Hernandez, L. Martinez, M.I. Lopez, R.B. Wicker, and J. Bracke: Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Phil. Trans. R. Soc. A 368, 1999 (2010).

    CAS  Google Scholar 

  4. C. Zhu, T. Liu, F. Qian, T.Y.J. Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, and Y. Li: Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16, 3448 (2016).

    CAS  Google Scholar 

  5. C. Xu, B.M. Gallant, P.U. Wunderlich, T. Lohmann, and J.R. Greer: Three-dimensional Au microlattices as positive electrodes for Li-O2 batteries. ACS Nano 9, 5876 (2015).

    CAS  Google Scholar 

  6. G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener: Three-dimensional nanostructures for photonics. Adv. Funct. Mater. 20, 1038 (2010).

    Google Scholar 

  7. J. Christensen, M. Kadic, M. Wegener, O. Kraft, and M. Wegener: Vibrant times for mechanical metamaterials. MRS Commun. 5, 453 (2015).

    CAS  Google Scholar 

  8. L.J. Gibson, and M.F. Ashby: Cellular Solids Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, 2001).

    Google Scholar 

  9. T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, and W.B. Carter: Ultralight metallic microlattices. Science 334, 962 (2011).

    CAS  Google Scholar 

  10. M.F. Ashby: Cellular solids–scaling of properties. In Cellular Ceramics: Structure, Manufacturing, Properties and Applications, edited by M. Scheffler, and P. Colombo (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005), pp. 3.

    Google Scholar 

  11. L.C. Montemayor, and J.R. Greer: Mechanical response of hollow metallic nanolattices: combining structural and material size effects. J. Appl. Mech. 82, 071012 (2015).

    Google Scholar 

  12. J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft: Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 15, 438 (2016).

    CAS  Google Scholar 

  13. T. George, V.S. Deshpande, and H.N.G. Wadley: Mechanical response of carbon fiber composite sandwich panels with pyramidal truss cores. Compos. Part A, Appl. Sci. Manuf. 47, 31 (2013).

    CAS  Google Scholar 

  14. L. Dong, V. Deshpande, and H. Wadley: Mechanical response of Ti-6Al-4 V octet-truss lattice structures. Int. J. Solids Struct. 60, 107 (2015).

    Google Scholar 

  15. N.A. Fleck, V.S. Deshpande, and M.F. Ashby: Micro-architectured materials: past, present and future. Proc. R. Soc. A 466, 2496 (2010).

    Google Scholar 

  16. V.S. Deshpande, M.F. Ashby, and N.A. Fleck: Foam topology: bending versus stretching dominated architectures. Acta Mater. 49, 1035 (2001).

    CAS  Google Scholar 

  17. L.R. Meza, A.J. Zelhofer, N. Clarke, A.J. Mateos, D.M. Kochmann, and J.R. Greer: Resilient 3D hierarchical architected metamaterials. Proc. Natl. Acad. Sci. USA 112, 11502 (2015).

    CAS  Google Scholar 

  18. L. Valdevit, and J. Bauer: Fabrication of 3D micro-architected/nano-architected materials. In Three-Dimensional Microfabrication Using Two-photon Polymerization, edited by Tommaso Baldacchini (Elsevier Inc., Amsterdam, 2016), pp. 345.

    Google Scholar 

  19. K.C. Cheung, and N. Gershenfeld: Reversibly assembled cellular composite materials. Science 341, 1219 (2013).

    CAS  Google Scholar 

  20. T. Zhu, J. Li, S. Ogata, and S. Yip: Mechanics of ultra-strength materials. MRS Bull. 34, 167 (2009).

    CAS  Google Scholar 

  21. B.G. Compton, and J.A. Lewis: 3D-printing of lightweight cellular composites. Adv. Mater. 26, 5930 (2014).

    CAS  Google Scholar 

  22. X. Zheng, H. Lee, T.H. Weisgraber, M. Shusteff, J. DeOtte, E.B. Duoss, J.D. Kuntz, M.M. Biener, Q. Ge, J. A. Jackson, S.O. Kucheyev, N.X. Fang, and C.M. Spadaccini: Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373 (2014).

    CAS  Google Scholar 

  23. R.D. Farahani, K. Chizari, and D. Therriault: Three-dimensional printing of freeform helical microstructures: a review. Nanoscale 6, 10470 (2014).

    CAS  Google Scholar 

  24. L. Montemayor, V. Chernow, and Julia J.R. Greer: Materials by design: using architecture in material design to reach new property spaces. MRS Bull. 40, 1122 (2015).

    Google Scholar 

  25. T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener: Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24, 2710 (2012).

    Google Scholar 

  26. F. Brenne, T. Niendorf, and H.J. Maier: Additively manufactured cellular structures: impact of microstructure and local strains on the monotonic and cyclic behavior under uniaxial and bending load. J. Mater. Process. Technol. 213, 1558 (2013).

    CAS  Google Scholar 

  27. L.C. Montemayor, L.R. Meza, and J.R. Greer: Design and fabrication of hollow rigid nanolattices via two-photon lithography. Adv. Eng. Mater. 16, 184 (2014).

    CAS  Google Scholar 

  28. L.R. Meza, S. Das, and J.R. Greer: Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322 (2014).

    CAS  Google Scholar 

  29. S. Naghieh, M.R. Karamooz Ravari, M. Badrossamay, E. Foroozmehr, and M. Kadkhodaei: Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: the effect of layer penetration and post-heating. J. Mech. Behav. Biomed. Mater. 59, 241 (2016).

    CAS  Google Scholar 

  30. R.D. Farahani, L.L. Lebel, and D. Therriault: Laboratory Processing parameters investigation for the fabrication of self-supported and free-form polymeric microstructures using ultraviolet-assisted three-dimensional printing. J. Micromech. Microeng. 24, 055020 (2014).

    Google Scholar 

  31. M.F. Ashby: The properties of foams and lattices. Philos. Trans. A, Math. Phys. Eng. Sci. 364, 15 (2006).

    CAS  Google Scholar 

  32. J. Bauer, S. Hengsbachb, I. Tesaria, R. Schwaigera, and O. Kraft: High-strength cellular ceramic composites with 3D microarchitecture. Proc. Natl. Acad. Sci. USA 111, 2453 (2014).

    CAS  Google Scholar 

  33. C. Zhu, T.Y.-J. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz, C.M. Spadaccini, and M.A. Worsley: Highly compressible 3D periodic gra-phene aerogel microlattices. Nat. Commun. 6, 6962 (2015).

    CAS  Google Scholar 

  34. D. Lin, S. **, F. Zhang, C. Wang, Y. Wang, C. Zhou, and G.J. Cheng: 3D stereolithography printing of graphene oxide reinforced complex architectures. Nanotechnology 26, 434003 (2015).

    Google Scholar 

  35. J.R. Raney, and J.A. Lewis: Printing mesoscale architectures. MRS Bull. 40, 943 (2015).

    Google Scholar 

  36. T. Serra, J.A. Planell, and M. Navarro: High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. 9, 5521 (2013).

    CAS  Google Scholar 

  37. A. Szczurek, A. Ortona, L. Ferrari, E. Rezaei, G. Medjahdi, V. Fierro, D. Bychanok, P. Kuzhir, and A. Celzard: Carbon periodic cellular architectures. Carbon 88, 70 (2015).

    CAS  Google Scholar 

  38. J. **ong, R. Mines, R. Ghosh, A. Vaziri, L. Ma, A. Ohrndorf, H.J. Christ, and L. Wu: Advanced micro-lattice materials. Adv. Eng. Mater. 17, 1253 (2015).

    CAS  Google Scholar 

  39. J.P.P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, M. Rombouts, J. Van Vaerenbergh, L. Froyen, M. Rombouts, J. Van Vaerenbergh, L. Froyen, and M. Rombouts: Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 11, 26 (2005).

    Google Scholar 

  40. A.J. Jacobsen, W. Barvosa-Carter, and S. Nutt: Micro-scale truss structures formed from self-propagating photopolymer waveguides. Adv. Mater. 19, 3892 (2007).

    CAS  Google Scholar 

  41. A. Torrents, T.A. Schaedler, A.J. Jacobsen, W.B. Carter, and L. Valdevit: Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale. Acta Mater. 60, 511 (2012).

    Google Scholar 

  42. A.T. Lausic, A.G. Bird, C.A. Steeves, and G.D. Hibbard: Scale-dependent failure of stereolithographic polymer microtrusses in three-point bending. J. Compos. Mater. 50, 1739 (2015).

    Google Scholar 

  43. J. Bauer, A. Schroer, R. Schwaiger, I. Tesari, C. Lange, L. Valdevit, and O. Kraft: Push-to-pull tensile testing of ultra-strong nanoscale ceramic–polymer composites made by additive manufacturing. Extreme Mech. Lett. 3, 105 (2015).

    Google Scholar 

  44. Z. Yang, C. Yan, J. Liu, S. Chabi, Y. **a, and Y. Zhu: Designing 3D gra-phene networks via a 3D-printed Ni template. RSC Adv. 5, 29397 (2015).

    CAS  Google Scholar 

  45. E. Taneva, B. Kusnoto, and C.A. Evans: 3D scanning, imaging and printing in orthodontics. In Issues in Contemporary Orthodontics, edited by Farid Bourzgui (INTECH, Rijeka, Croatia, 2015), pp. 148.

    Google Scholar 

  46. A. Clausen, F. Wang, J.S. Jensen, O. Sigmund, and J.A. Lewis: Topology optimized architectures with programmable Poisson’s Ratio over large Deformations. Adv. Mater. 27, 5523 (2015).

    CAS  Google Scholar 

  47. Z. Yang, S. Chabi, Y. **a, and Y. Zhu: Preparation of 3D graphene-based architectures and their applications in supercapacitors. Progr. Nat. Sci. Mater. Int. 25, 554 (2015).

    CAS  Google Scholar 

  48. J.T. Kim, S.K. Seol, J. Pyo, J.S. Lee, J.H. Je, and G. Margaritondo: Three-dimensional writing of conducting polymer nanowire arrays by meniscus-guided polymerization. Adv. Mater. 23, 1968 (2011).

    CAS  Google Scholar 

  49. S.K. Seol, W.S. Chang, D. Kim, and S. Jung: Carbon nanotube-conducting polymer composite wires formed by fountain pen growth (FPG) route. RSC Adv. 2, 8926 (2012).

    CAS  Google Scholar 

  50. J.H. Kim, W.S. Chang, D. Kim, J.R. Yang, J.T. Han, G.W. Lee, J.T. Kim, and S.K. Seol: 3D printing of reduced graphene oxide nanowires. Adv. Mater. 27, 157 (2015).

    CAS  Google Scholar 

  51. M.R. Karamooz Ravari, M. Kadkhodaei, M. Badrossamay, and R. Rezaei: Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling. Int. J. Mech. Sci. 88, 154 (2014).

    Google Scholar 

  52. T.J. Ober, D. Foresti, and J.A. Lewis: Active mixing of complex fluids at the microscale. Proc. Natl. Acad. Sci. USA 112, 12293 (2015).

    CAS  Google Scholar 

  53. K. Wang, Y.-H. Chang, Y. Chen, C. Zhang, and B. Wang: Designable dualmaterial auxetic metamaterials using three-dimensional printing. Mater. Des. 67, 159 (2015).

    Google Scholar 

  54. H. Gao, B. Ji, I.L. Jäger, E. Arzt, and P. Fratzl: Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl. Acad. Sci. USA 100, 5597 (2013).

    Google Scholar 

  55. Y. Ma, and Y. Chen: Three-dimensional graphene networks: synthesis, properties and applications. Natl. Sci. Rev. 2, 40 (2015).

    CAS  Google Scholar 

  56. B. Román-Manso, F.M. Figueiredo, B. Achiaga, R. Barea, D. Pérez-Coll, A. Morelos-Gómez, M. Terrones, I. Osendi, M. Belmonte, and P. Miranzo: Electrically functional 3D-architectured graphene/SiC composites. Carbon 100, 318 (2016).

    Google Scholar 

  57. L. Dong, V. Deshpande, and H. Wadley: Mechanical properties of carbon fiber composite octet-truss lattice structures. Compos. Sci. Technol. 119, 26 (2015).

    CAS  Google Scholar 

  58. J. Liu, W. Qiao, J. Liu, D. **e, Z. Zhou, L. Wu, and L. Ma: High temperature indentation behaviors of carbon fiber composite pyramidal truss structures. Compos. Struct. 131, 266 (2015).

    Google Scholar 

  59. A.G. Mark, S. Palagi, T. Qiu, and P. Fischer: Auxetic metamaterial simplifies soft robot design (IEEE Int. Conf. Robotics and Automation Proc., Sweden, 2016), p. 4951.

    Google Scholar 

  60. C.S. Roper, R.C. Schubert, K.J. Maloney, D. Page, C.J. Ro, S.S. Yang, and A.J. Jacobsen: Scalable 3D bicontinuous fluid networks: polymer heat exchangers toward artificial organs. Adv. Mater. 27, 2479 (2015).

    CAS  Google Scholar 

  61. L.C. Mozdzen, R. Rodgers, J.M. Banks, R.C. Bailey, and B.A.C. Harley: Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers. Acta Biomater. 33, 25 (2016).

    CAS  Google Scholar 

Download references

Acknowledgments

This work received financial support from Discovery Accelerator Supplement Grant 493028-2016, funded by Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Han, S.M. & Kim, W.S. Three-dimensionally printed cellular architecture materials: perspectives on fabrication, material advances, and applications. MRS Communications 7, 8–19 (2017). https://doi.org/10.1557/mrc.2016.62

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.62

Navigation