Log in

“Green” electrospinning of a collagen/hydroxyapatite composite nanofibrous scaffold

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In this work, a composite nanofibrous scaffold of collagen/hydroxyapatite was prepared by electrospinning using a mild solvent. Hydroxyapatite particles dispersed into a collagen/acetic acid/water solution was electrospun to yield composite nanofibers. Scanning electron microscopy reveals nanofibers with an average diameter of 342 ± 67 nm, and a rough surface caused by the hydroxyapatite particles. Both X-ray and infrared spectroscopy confirmed the presence of the hydroxyapatite particles embedded in the collagen fibers. The inclusion of hydroxyapatite particles does not alter the native collagen structure. Lastly, these composite nanofibers support pre-osteoblast adhesion. These results show how "green" electrospinning could be used to generate nanocomposite scaffolds with potential biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. S. Agarwal, J.H. Wendorff, and A. Greiner: Use of electrospinning technique for biomedical applications. Polymer (Guildf) 49, 5603–5621 (2008).

    Article  CAS  Google Scholar 

  2. B.D. Walters and J.P. Stegemann: Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales. Acta Biomater. 10, 1488–1501 (2014).

    Article  CAS  Google Scholar 

  3. J. Almodovar, D.A. Castilla Casadiego, and H.V. Ramos Avilez: Polysaccharide-based biomaterials for cell-material interface. In Cell and Material Interface: Advances in Tissue Engineering, Biosensor, Implant, and Imaging Technologies, edited by N.E. Vrana (CRC Press, 5, Florida, 2015), pp. 230–244.

    Google Scholar 

  4. J.D. Schiffman and C.L. Schauer: A review: electrospinning of biopolymer nanofibers and their applications. Polym. Rev. 48, 317–352 (2008).

    Article  CAS  Google Scholar 

  5. G.P. Huang, S. Shanmugasundaram, P. Masih, D. Pandya, S. Amara, G. Collins, and T.L. Arinzeh: An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds. J. Biomed. Mater. Res. A 103, 762–771 (2015).

    Article  Google Scholar 

  6. K.S. Rho, L. Jeong, G. Lee, B.-M. Seo, Y.J. Park, S.-D. Hong, S. Roh, J.J. Cho, W.H. Park, and B.-M. Min: Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27, 1452–1461 (2006).

    Article  CAS  Google Scholar 

  7. D.I. Zeugolis, S.T. Khew, E.S. Yew, A.K. Ekaputra, Y.W. Tong, L.-Y.L. Yung, D.W. Hutmacher, C. Sheppard, and M. Raghunath: Electro-spinning of pure collagen nano-fibres–just an expensive way to make gelatin? Biomaterials 29, 2293–2305 (2008).

    Article  CAS  Google Scholar 

  8. L. Liverani and A. Boccaccini: Versatile production of poly(Epsilon-Caprolactone) fibers by Electrospinning using benign solvents. Nanomaterials 6, 75 (2016).

    Article  Google Scholar 

  9. S. Agarwal and A. Greiner: On the way to clean and safe electrospinning-green electrospinning: emulsion and suspension electrospinning. Polym. Adv. Technol. 22, 372–378 (2011).

    Article  CAS  Google Scholar 

  10. M. Kazanci: Solvent and temperature effects on folding of electrospun collagen nanofibers. Mater. Lett. 130, 223–226 (2014).

    Article  CAS  Google Scholar 

  11. J. Lin, C. Li, Y. Zhao, J. Hu, and L.-M. Zhang: Co-electrospun nanofibrous membranes of collagen and Zein for wound healing. ACS Appl. Mater. Interfaces 4, 1050–1057 (2012).

    Article  CAS  Google Scholar 

  12. A. Elamparithi, A.M. Punnoose, and S. Kuruvilla: Electrospun type 1 collagen matrices preserving native ultrastructure using benign binary solvent for cardiac tissue engineering. Artif. Cells, Nanomed., Biotechnol. 44, 1–8 (2015).

    Article  Google Scholar 

  13. A. Fiorani, C. Gualandi, S. Panseri, M. Montesi, M. Marcacci, M.L. Focarete, and A. Bigi: Comparative performance of collagen nanofibers electrospun from different solvents and stabilized by different crosslinkers. J. Mater. Sci. Mater. Med. 25, 2313–2321 (2014).

    Article  CAS  Google Scholar 

  14. T. Liu, W.K. Teng, B.P. Chan and S.Y. Chew: Photochemical crosslinked electrospun collagen nanofibers: synthesis, characterization and neural stem cell interactions. J. Biomed. Mater. Res. A 95 A, 276–282 (2010).

    Article  CAS  Google Scholar 

  15. D. Castilla Casadiego, H.V. Ramos Avilez, S. Herrera-Posada, B. Calcagno, L. Loyo, J. Shipmon, A. Acevedo, A. Quintana, and J. Almodovar: Engineering of a stable collagen nanofibrous scaffold with tunable fiber diameter, alignment, and mechanical properties. Macromol. Mater. Eng. 301, 1064–1075 (2016).

    Article  CAS  Google Scholar 

  16. M.F. Young: Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteoporos. Int. 14 (Suppl 3), S35–S42 (2003).

    Article  CAS  Google Scholar 

  17. S.-H. Teng, E.-J. Lee, P. Wang, and H.-E. Kim: Collagen/hydroxyapatite composite nanofibers by electrospinning. Mater. Lett. 62, 3055–3058 (2008).

    Article  CAS  Google Scholar 

  18. J. Venugopal, S. Low, A.T. Choon, T.S. Sampath Kumar, and S. Ramakrishna: Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. J. Mater. Sci. Mater. Med. 19, 2039–2046 (2008).

    Article  CAS  Google Scholar 

  19. J. Ji, B. Bar-On, and H.D. Wagner: Mechanics of electrospun collagen and hydroxyapatite/collagen nanofibers. J. Mech. Behav. Biomed. Mater. 13, 185–193 (2012).

    Article  CAS  Google Scholar 

  20. Y. Zhang, V.J. Reddy, S.Y. Wong, X. Li, B. Su, S. Ramakrishna, and C.T. Lim: Enhanced biomineralization in osteoblasts on a novel electrospun biocomposite nanofibrous substrate of hydroxyapatite/collagen/chitosan. Tissue Eng. A 16, 1949–1960 (2010).

    Article  CAS  Google Scholar 

  21. A.S. Asran, S. Henning, and G.H. Michler: Polyvinyl alcohol–collagen–hydroxyapatite biocomposite Nanofibrous scaffold: mimicking the key features of natural bone at the nanoscale level. Polymer (Guildf) 51, 868–876 (2010).

    Article  CAS  Google Scholar 

  22. W. Song, D.C. Markel, S. Wang, T. Shi, G. Mao, and W. Ren: Electrospun polyvinyl alcohol-collagen-hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells. Nanotechnology 23, 115–101 (2012).

    Google Scholar 

  23. Y. Zhou, H. Yao, J. Wang, D. Wang, Q. Liu, and Z. Li: Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering. Int. J. Nanomed. 10, 3203–3215 (2015).

    Article  CAS  Google Scholar 

  24. D.A. Towler and R.S. Arnaud: Use of cultured osteoblastic cells to identify and characterize transcriptional regulatory complexes. In Principles of Bone Biology, 2nd ed.; J.P. Bilezikian, L.G. Raisz and G.A. Rodan, eds; Academic Press: London, England, 2002; pp. 1503–1527.

    Chapter  Google Scholar 

  25. N.P. Camacho, P. West, P.A. Torzilli, and R. Mendelsohn: FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage. Biopolym.—Biospectrosc. Sect. 62, 1–8 (2001).

    Article  CAS  Google Scholar 

  26. R.M. Trommer, L.A. dos Santos, and C.P. Bergmann: Alternative technique to obtain hydroxyapatite coatings. Cerâmica 53, 153–158 (2007).

    Article  CAS  Google Scholar 

  27. M. Apella, S. Venegas, and L. Rodenas: Synthetic hydroxyapatite as a surface model of dental enamel and dentine. J. Argentine Chem. Soc. 97, 109–118 (2008).

    Google Scholar 

  28. H.K. Varma, Y. Yokogawa, F.F. Espinosa, Y. Kawamoto, K. Nishizawa, F. Nagata, and T. Kameyama: Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method. Biomaterials 20, 879–884 (1999).

    Article  CAS  Google Scholar 

  29. I. Manjubala, I. Ponomarev, I. Wilke, and K.D. Jandt: Growth of osteoblast-like cells on biomimetic apatite-coated chitosan scaffolds. J. Biomed. Mater. Res. B, Appl. Biomater. 84, 7–16 (2008).

    Article  CAS  Google Scholar 

  30. N.J. Shah, J. Hong, M.N. Hyder, and P.T. Hammond: Osteophilic multilayer coatings for accelerated bone tissue growth. Adv. Mater. 24, 1445–50 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the NSF’s Puerto Rico Institute for Functional Nanomaterials (EPS-1002410), by the Puerto Rico Research, Science, and Technology Trust (Agreement Number 2016-00067), and by the “Programa de Apoyo Institucional Para la Formation en Estudios de Posgrados en Maestrias y Doctorados de La Universidad del Atlántico, Colombia” by providing DCC a scholarship. The authors thank Dr. Ricky Valentin for access to the electrospinning equipment; Dr. David Suleiman for access to the FTIR apparatus; Christian Rivera for assistance using the EDAX equipment; Beatriz Quinones for her support in the use of the FTIR; Ana M. Reyes for her support with the Particle Size Apparatus; Edwin Burgos, Coral Irizarry, & the UPRM Center for Biomedical Engineering and Nanomedicine for support of the in vitro experiments; and José Almodovar for providing assistance with the confocal microscope. The authors thank Dr. Anibal Quintana from Integra Lifesciences for generously donating collagen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Almodovar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castilla-Casadiego, D.A., Maldonado, M., Sundaram, P. et al. “Green” electrospinning of a collagen/hydroxyapatite composite nanofibrous scaffold. MRS Communications 6, 402–407 (2016). https://doi.org/10.1557/mrc.2016.43

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.43

Navigation