Log in

Simple nanoindentation-based method for determining linear thermal expansion coefficients of micro-scale materials

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The thermal expansion coefficient (CTE) is a vital design parameter for reducing the thermal-stress-induced structural failure of electronic chips/devices. At the micro- and nano-scale, the typical size range of the components in chips/devices, the CTEs are probably different from that of the bulk materials, but an easy and accurate measurement method is still lacking. In this paper, we present a simple but effective method for determining linear CTEs of micro-scale materials only using the prevalent nanoindentation system equipped with a heating stage for precise temperature control. By holding a constant force on the sample surface, while heating the sample at a constant rate, we measure two height–temperature curves at two positions, respectively, which are close to each other but at different heights. The linear CTE is obtained by analyzing the difference of height change during heating. This method can be applied to study the size effect or surface effect of CTE of embedded micro-scale structures, aiding the failure analysis and structural design in the semiconductor industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Table 1:
Figure 5:

Similar content being viewed by others

References

  1. H.P. Chi: A simple method for determining linear thermal expansion coefficients of thin films. J. Micromech. Microeng. 12, 548 (2002).

    Article  Google Scholar 

  2. P. Lerch, C.K. Slimane, B. Romanowicz, and P. Renaud: Modelization and characterization of asymmetrical thermal micro-actuators. J. Micromech. Microeng. 6, 134 (1996).

    Article  Google Scholar 

  3. C.S. Pan and W. Hsu: An electro-thermally and laterally driven polysilicon microactuator. J. Micromech. Microeng. 7, 7 (1997).

    Article  CAS  Google Scholar 

  4. P.H. Mayrhofer, F. Kunc, J. Musil, and C. Mitterer: A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings. Thin Solid Films 415, 151 (2002).

    Article  CAS  Google Scholar 

  5. M. Bielawski: Residual stress control in TiN/Si coatings deposited by unbalanced magnetron sputtering. Surf. Coat. Technol. 200, 3987 (2006).

    Article  CAS  Google Scholar 

  6. H.O. Pierson: Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications (Noyes Publications, NJ, USA, 1996), p. 186.

    Google Scholar 

  7. W. Fang and J.A. Wickert: Comments on measuring thin-film stresses using bi-layer micromachined beams. J. Micromech. Microeng. 5, 276 (1995).

    Article  Google Scholar 

  8. W. Fang and C.-Y. Lo: On the thermal expansion coefficients of thin films. Sens. Actuators A 84, 310 (1999).

    Article  Google Scholar 

  9. M. Von Arx, O. Paul, and H. Baltes: Process-dependent thin-film thermal conductivities for thermal CMOS MEMS. J. Microelectromechan. Syst. 9, 136 (2000).

    Article  Google Scholar 

  10. W. Fang and J.A. Wickert: Determining mean and gradient residual stresses in thin films using micromachined cantilevers. J. Micromech. Microeng. 6, 301 (1996).

    Article  CAS  Google Scholar 

  11. J.J. Vlassak and W.D. Nix: A new bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films. J. Mater. Res. 7, 3242 (1992).

    Article  CAS  Google Scholar 

  12. E. Jansen and E. Obermeier: Thermal conductivity measurements on thin films based on micromechanical devices. Diam. Relat. Mater. 5, 644 (1996).

    Article  CAS  Google Scholar 

  13. R.V. Jones and J.C.S. Richards: Recording optical lever. J. Sci. Instrum. 36, 90 (1959).

    Article  Google Scholar 

  14. R.E. Kinzly: A new interferometer capable of measuring small optical path differences. Appl. Opt. 6, 137 (1967).

    Article  CAS  Google Scholar 

  15. S.F. Jacobs, J.N. Bradford, and J.W. Berthold: Ultraprecise measurement of thermal coefficients of expansion. Appl. Opt. 9, 2477 (1970).

    Article  CAS  Google Scholar 

  16. Y. Okada and Y. Tokumaru: Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K. J. Appl. Phys. 56, 314 (1984).

    Article  CAS  Google Scholar 

  17. G. Fug, H. Gasparoux, and J.J. Piaud: Thermal variation apparatus for X-ray diffraction experiments up to 3000 K. J. Phys. E Sci. Instrum. 5, 1222 (1972).

    Article  Google Scholar 

  18. S. Miksic, G. Sherman, and H. Lal: High-temperature X-ray diffraction furnace using a thermal-image technique. J. Appl. Crystallogr. 9, 466 (1976).

    Article  Google Scholar 

  19. K.G. Lyon, G.L. Salinger, C.A. Swenson, and G.K. White: Linear thermal expansion measurements on silicon from 6 to 340 K. J. Appl. Phys. 48, 865 (1977).

    Article  CAS  Google Scholar 

  20. Y. Okada: A high-temperature attachment for precise measurement of lattice parameters by Bond's method between room temperature and 1500 K. J. Phys. E Sci. Instrum. 15, 1060 (1982).

    Article  CAS  Google Scholar 

  21. K.S. Gadre and T.L. Alford: Crack formation in TiN films deposited on Pa-n due to large thermal mismatch. Thin Solid Films 394, 124 (2001).

    Article  Google Scholar 

  22. Y. Zoo, D. Adams, J.W. Mayer, and T.L. Alford: Investigation of coefficient of thermal expansion of silver thin film on different substrates using X-ray diffraction. Thin Solid Films 513, 170 (2006).

    Article  CAS  Google Scholar 

  23. A. Champi, R.G. Lacerda, G.A. Viana, and F.C. Marques: Thermal expansion dependence on the sp2 concentration of amorphous carbon and carbon nitride. J. Non Cryst. Solids 338–340, 499 (2004).

    Article  Google Scholar 

  24. E. Besozzi, D. Dellasega, A. Pezzoli, A. Mantegazza, M. Passoni, and M.G. Beghi: Coefficient of thermal expansion of nanostructured tungsten based coatings assessed by substrate curvature method. Mater. Des. 137, 192 (2018).

    Article  CAS  Google Scholar 

  25. D. Olmos, F. Martínez, G. González-Gaitano, and J. González-Benitoa: Effect of the presence of silica nanoparticles in the coefficient of thermal expansion of LDPE. Eur. Polym. J. 47, 1495 (2011).

    Article  CAS  Google Scholar 

  26. X.R. Zhang, T.S. Fisher, A. Raman, and T.D. Sands: Linear coefficient of thermal expansion of porous anodic alumina thin films from atomic force microscopy. Nanosc. Microsc. Thermophys. Eng. 13, 243 (2009).

    Article  CAS  Google Scholar 

  27. J. González-Benito, E. Castillo, and J.F. Cruz-Caldito: Determination of the linear coefficient of thermal expansion in polymer films at the nanoscale: Influence of the composition of EVA copolymers and the molecular weight of PMMA. Phys. Chem. Chem. Phys. 17, 18495 (2015).

    Article  Google Scholar 

  28. J.H. Zhao, Y. Du, M. Morgen, and P.S. Ho: Simultaneous measurement of Young's modulus, Poisson ratio, and coefficient of thermal expansion of thin films on substrates. J. Appl. Phys. 87, 1575 (2000).

    Article  CAS  Google Scholar 

  29. A.M. Russell and B.A. Cook: Coefficient of thermal expansion anisotropy and texture effects in ultra-thin titanium sheet. Scr. Mater. 37, 1461 (1997).

    Article  CAS  Google Scholar 

  30. M.M.D. Lima, R.G. Lacerda, J. Vilcarromero, and F.C. Marques: Coefficient of thermal expansion and elastic modulus of thin films. J. Appl. Phys. 86, 4936 (1999).

    Article  Google Scholar 

  31. W. Riethmuller and W. Benecke: Thermally excited silicon microactuators. IEEE Trans. Electron Devices 35, 758 (1988).

    Article  Google Scholar 

  32. R. Feng and R.J. Farris: The characterization of thermal and elastic constants for an epoxy photoresist SU8 coating. J. Mater. Sci. 37, 4793 (2002).

    Article  CAS  Google Scholar 

  33. H.C. Liou, P.S. Ho, and R. Stierman: Thickness dependence of the anisotropy in thermal expansion of PMDA-ODA and BPDA-PDA thin films. Thin Solid Films 339, 68 (1999).

    Article  CAS  Google Scholar 

  34. C.L. Choy: Chapter 4 Thermal expansivity of oriented polymers. In Developments in Oriented Polymers-1, I.M. Ward, ed. (Applied Science Publishers, London and NJ, England and USA, 1982), pp. 121.

    Google Scholar 

  35. S. Liu, V.S. Chevali, Z. Xu, D. Hui, and H. Wang: A review of extending performance of epoxy resins using carbon nanomaterials. Compos. Part B 136, 197 (2018).

    Article  CAS  Google Scholar 

  36. S. Rimdusit and H. Ishida: Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins. Polymer 41, 7941 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author gratefully thanks Professor Zhiwei Shan, Professor Boyu Liu, and Professor Kai Chen at **'an Jiaotong University for the valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Degang **e.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Nie, Z., Ma, C. et al. Simple nanoindentation-based method for determining linear thermal expansion coefficients of micro-scale materials. Journal of Materials Research 35, 3202–3209 (2020). https://doi.org/10.1557/jmr.2020.320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.320

Keywords

Navigation