Log in

Future of nanoindentation in archaeometry

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This review aims to consolidate scarce literature on the use of modern nanomechanical testing technique like instrumented nanoindentation in the field of archaeometry materials research. The review showcase on how can the nanoindentation tests provide valuable data about mechanical properties which, in turn, relate to the evolution of ancient biomaterials as well as human history and production methods. This is particularly useful when the testing is limited by confined volumes and small material samples (since the contact size is in the order of few microns). As an emerging novel application, some special considerations are warranted for characterization of archaeometry materials. In this review, potential research areas relating to how nanoindentation is expected to benefit and help improve existing practices in archaeometry are identified. It is expected that these insights will raise awareness for use of nanoindentation at various world heritage sites as well as various museums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. K. Ryzewski, B.W. Sheldon, S.E. Alcock, M. Mankin, S. Vasudevan, and N. Sinnott-Armstrong: Multiple assessments of local properties, production, and performance in metal objects: An experimental case study from Petra. Jordan. Archaeol. Anthropol. Sci. 3, 173 (2011).

    Article  Google Scholar 

  2. ISO 14577-1, -2, -3, -4 Metallic Materials Instrumented Indentation Tests for Hardness and Material Properties Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036.

  3. ASTM E2546-07: Standard Practice for Instrumented Indentation Testing (ASTM International, West Conshohocken, Pennsylvania, 2007). www.astm.org.

    Google Scholar 

  4. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Sci. 7, 1564 (1992).

    CAS  Google Scholar 

  5. G.M. Erickson, B.A. Krick, M. Hamilton, G.R. Bourne, M.A. Norell, E. Lilleodden, and W.G. Sawyer: Complex dental structure and wear biomechanics in hadrosaurid dinosaurs. Science 338, 98 (2012).

    Article  CAS  Google Scholar 

  6. M. Janko, A. Zink, A.M. Gigler, W.M. Heckl, and R.W. Stark: Nanostructure and mechanics of mummified type I collagen from the 5300-year-old Tyrolean Iceman. Proc. R. Soc. B 277, 2301 (2010).

    Article  Google Scholar 

  7. P. Northover, S. Northover, and A. Wilson: Microstructures of ancient and historic silver. In Metal 2013, 16–20 September 2013, (International Council of Museums ICOM-CC, 253, Edinburgh, 2013); pp. 253–260. http://oro.open.ac.uk/37678/.

    Google Scholar 

  8. N. Patzke, A.A. Levin, I.P. Shakhverdova, M. Reibold, W. Kochmann, P. Paufler, and D.C. Meyer: Nanostructured ancient Damascus blades, DMG (2008). (abstract no. 208, session S17). Available at: https://www.dmg-home.org/fileadmin/Konferenzen/DMG-CD/filedir/208_abstract.pdf.

  9. W. Kochmann, M. Reibold, R. Goldberg, W. Hauffe, A.A. Levin, D.C. Eyer, T. Stephan, H. Müller, A. Belger, and P. Paufler: Nanowires in ancient Damascus steel. J. Alloys Compd. 372, L15–L19 (2004).

    Article  CAS  Google Scholar 

  10. Y. Li, T. Wu, L. Liao, C. Liao, L. Zhang, G. Chen, and C. Pan: Techniques employed in making ancient thin-walled bronze vessels unearthed in Hubei Province, China. Appl. Phys. A: Mater. Sci. Process. 111, 913 (2013).

    Article  CAS  Google Scholar 

  11. B.C. Chakoumakos, W.C. Oliver, G.R. Lumpkin, and R.C. Ewing: Hardness and elastic modulus of zircon as a function of heavy-particle irradiation dose: I. In situ α-decay event damage. Radiat. Eff. Defects Solids 118, 393 (1991).

    Article  Google Scholar 

  12. H. Lerner, X. Du, A. Costopoulos, and M. Ostoja-Starzewski: Lithic raw material physical properties and use-wear accrual. J. Archaeol. Sci. 34, 711 (2007).

    Article  Google Scholar 

  13. G.D. Sanson, S.A. Kerr, and K.A. Gross: Do silica phytoliths really wear mammalian teeth?J. Archaeol. Sci. 34, 526 (2007).

    Article  Google Scholar 

  14. F. Riede and J.M. Wheeler: Testing the ‘Laacher See Hypothesis’: Tephra as dental abrasive. J. Archaeol. Sci. 36, 2384 (2009).

    Article  Google Scholar 

  15. P.L. Manning, L. Margetts, M.R. Johnson, P.J. Withers, W.I. Sellers, P.L. Falkingham, P.M. Mummery, P.M. Barrett, and D.R. Raymont: Biomechanics of dromaeosaurid dinosaur claws: Application of X-ray microtomography, nanoindentation and finite element analysis. Anat. Rec. 292, 1397 (2009).

    Article  Google Scholar 

  16. J. Salvant, E. Barthel, and M. Menu: Nanoindentation and the micromechanics of Van Gogh oil paints. Appl. Phys. A: Mater. Sci. Process. 104, 509 (2011).

    Article  CAS  Google Scholar 

  17. S.E. Olesiak, M.L. Oyen, M. Sponheimer, J.J. Eberle, and V.L. Ferguson: Ultrastructural mechanical and material characterization of fossilized bone. Mater. Res. Soc. Symp. Proc. 975, 0975–DD03–09 (2006).

    Article  Google Scholar 

  18. S.E. Olesiak, M. Sponheimer, J.J. Eberle, M.L. Oyen, and V.L. Ferguson: Nanomechanical properties of modern and fossil bone. Palaeogeogr., Palaeoclimatol., Palaeoecol 289, 25 (2010).

    Article  Google Scholar 

  19. N.H. Faisal, R. Ahmed, and R.L. Reuben: Indentation testing and its acoustic emission response: Applications and emerging trends. Int. Mater. Rev. 56, 98 (2011).

    Article  CAS  Google Scholar 

  20. W.C. Oliver and G.M. Pharr: Nanoindentation in materials research; past, present, and future. MRS Bull. 35, 897 (2010).

    Article  CAS  Google Scholar 

  21. D. Tabor: The Hardness of Metals (Oxford Clarendon Press, Oxford, England, 1951); pp. 19–43.

    Google Scholar 

  22. N.K. Mukhopadhyay and P. Paufler: Micro- and nanoindentation techniques for mechanical characterisation of materials. Int. Mater. Rev. 51, 209 (2006).

    Article  CAS  Google Scholar 

  23. M.R. VanLandingham: Review of instrumented indentation. J. Res. Natl. Inst. Stand. Technol. 108, 249 (2003).

    Article  Google Scholar 

  24. A.C. Fisher-Cripps: Nanoindentation (Springer, New York, 2002); p. 39.

    Book  Google Scholar 

  25. R. Hill: The Mathematical Theory of Plasticity (Oxford Clarendon Press, Oxford, England, 1950); p. 14.

    Google Scholar 

  26. B.R. Lawn and R. Wilshaw: Review-indentation fracture: Principles and applications. J. Mater. Sci. 10, 1049 (1975).

    Article  Google Scholar 

  27. B.R. Lawn and D.B. Marshall: Hardness, toughness, and brittleness: An indentation analysis. J. Am. Ceram. Soc. 62, 347 (1979).

    Article  CAS  Google Scholar 

  28. M.L. Oyen: Analytical techniques for indentation of viscoelastic materials. Philos. Mag. 86, 5625 (2006).

    Article  CAS  Google Scholar 

  29. J.B. Pethicai, R. Hutchings, and W.C. Oliver: Hardness measurement at penetration depths as small as 20 nm. Philos. Mag. A 48, 593 (1983).

    Article  Google Scholar 

  30. S. Goel, G. Cross, A. Stukowski, E. Gamsjäger, B. Beake, and A. Agrawal: Designing nanoindentation simulation studies by appropriate indenter choices: Case study on single crystal tungsten. Comput. Mater. Sci. 152, 196 (2018).

    Article  CAS  Google Scholar 

  31. A.C. Fischer-Cripps: Nanoindentation, 2nd ed. (Springer-Verlag, New York, 2002); p. 39.

    Book  Google Scholar 

  32. S. Suresh and A. Giannakopoulos: A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 46, 5755 (1998).

    Article  CAS  Google Scholar 

  33. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 1 (2004).

    Article  Google Scholar 

  34. A.C. Fischer-Cripps: Introduction to Contact Mechanics, 2nd ed. (Springer US, 2007); pp. 77, 175.

    Book  Google Scholar 

  35. K.L. Johnson: Contact Mechanics (Cambridge University Press, England, 1985); p. 84.

    Book  Google Scholar 

  36. I.N. Sneddon: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  37. G.M. Pharr, J.H. Strader, and W.C. Oliver: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J. Mater. Res. 24, 653 (2009).

    Article  CAS  Google Scholar 

  38. NanoBlitz 4D: Available at: http://nanomechanicsinc.com/available-now-nanoblitz-3d-4d/ (accessed September 5, 2017).

  39. O. Jiroušek: Nanoindentation in Materials Science (IntechOpen Limited, London, 2012); p. 259.

    Google Scholar 

  40. A.J. Bushby, V.L. Ferguson, and A. Boyde: Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmethacrylate. J. Mater. Res. 19, 249 (2004).

    Article  CAS  Google Scholar 

  41. M. Granke, A. Coulmier, S. Uppuganti, J.A. Gaddy, M.D. Does, and J.S. Nyman: Insights into reference point indentation involving human cortical bone: Sensitivity to tissue anisotropy and mechanical behavior. J. Mech. Behav. Biomed. Mater. 37, 174 (2014).

    Article  Google Scholar 

  42. A.K. Bembey, M.L. Oyen, A.J. Bushby, and A. Boyde: Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philos. Mag. 86, 5691 (2006).

    Article  CAS  Google Scholar 

  43. R.K. Nalla, M. Balooch, J.W. Ager, III, J.J. Kruzic, J.H. Kinney, and R.O. Ritchie: Effects of polar solvents on the fracture resistance of dentin: Role of water hydration. Acta Biomater. 1, 31 (2005).

    Article  CAS  Google Scholar 

  44. L. Angker and M.V. Swain: Nanoindentation: Application to dental hard tissue investigations. J. Mater. Res. 21, 1893 (2006).

    Article  CAS  Google Scholar 

  45. M. Dudíková, D. Kytýr, T. Doktor, and O. Jiroušek: Monitoring of material surface polishing procedure using confocal microscope. Chem. Listy 105, 790 (2011).

    Google Scholar 

  46. B. Bhushan, W. Tang, and S. Ge: Nanomechanical characterization of skin and skin cream. J. Microsc. 240, 135 (2010).

    Article  CAS  Google Scholar 

  47. M.L. Crichton, X. Chen, H. Huang, and M.A.F. Kendall: Elastic modulus and viscoelastic properties of full thickness skin characterised at micro scales. Biomaterials 34, 2087 (2013).

    Article  CAS  Google Scholar 

  48. M. Reibold, P. Paufler, A.A. Levin, W. Kochmann, N. Pätzke, and D.C. Meyer: Materials: Carbon nanotubes in an ancient Damascus sabre. Nature 444, 286 (2006).

    Article  CAS  Google Scholar 

  49. O. Borrero-Lopez, A. Pajares, P.J. Constantino, and B.R. Lawn: A model for predicting wear rates in tooth enamel. J. Mech. Behav. Biomed. Mater. 37, 226 (2014).

    Article  Google Scholar 

  50. P. Ungar and M. Sponheimer: The diets of early hominins. Science 334, 190 (2011).

    Article  CAS  Google Scholar 

  51. B.R. Lawn and R.F. Cook: Probing material properties with sharp indenters: A retrospective. J. Mater. Sci. 47, 1 (2012).

    Article  CAS  Google Scholar 

  52. J. Lange, A. Luisier, E. Schedin, G. Ekstrand, and A. Hult: Development of scratch tests for pre-painted metal sheet and the influence of paint properties on the scratch resistance. J. Mater. Process. Technol. 86, 300 (1999).

    Article  Google Scholar 

  53. S.W. Wai: Rapid Assessment of Paint Coatings by Micro and Nano Indentation Methods. Ph.D. thesis, School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, 2013. Available at: http://ro.uow.edu.au/theses/3873.

  54. R.A. Brand: Biographical sketch: Julius Wolff, 1836–1902. Clin. Orthop. Relat. Res. 468, 1047 (2010).

    Article  Google Scholar 

  55. U. Wolfram and J. Schwiedrzik: Post-yield and failure properties of cortical bone. BoneKEy Rep. 5, 829 (2016).

    Article  Google Scholar 

  56. J. Schwiedrzik, R. Raghavan, A. Bürki, V. LeNader, U. Wolfram, J. Michler, and P. Zysset: In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone. Nat. Mater. 13, 740 (2014).

    Article  CAS  Google Scholar 

  57. M.J. Mirzaali, J.J. Schwiedrzik, S. Thaiwichai, J.P. Best, J. Michler, P.K. Zysset, and U. Wolfram: Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone 93, 196 (2016).

    Article  Google Scholar 

  58. K.S. Anseth, C.N. Bowman, and L. Brannon-Peppas: Mechanical properties of hydrogels and their experimental determination. Biomaterials 17, 1647 (1996).

    Article  CAS  Google Scholar 

  59. N.H. Faisal and R. Ahmed: A review of patented methodologies in instrumented indentation residual stress measurements. Recent Pat. Mech. Eng. 4, 138 (2011).

    Google Scholar 

  60. H. Yao, Z. **e, C. He, and M. Dao: Fracture mode control: A bio-inspired strategy to combat catastrophic damage. Sci. Rep. 5, 8011 (2015).

    Article  CAS  Google Scholar 

  61. A. Fatima and P.T. Mativenga: On the comparative cutting performance of nature-inspired structured cutting tool in dry cutting of AISI/SAE 4140. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 231, 1941 (2017).

    Article  CAS  Google Scholar 

  62. Four student-designed, nature-inspired transportation solutions: Available at: http://makezine.com/2014/06/10/four-student-designed-nature-inspired-transporation-solutions/ (accessed August 20, 2017).

  63. Research showcase on bioinspired design: Available at: http://www3.imperial.ac.uk/newsandeventspggrp/imperialcollege/engineering/newssummary/news_2-2-2016-16-28-13 (accessed August 20, 2017).

  64. P.S. Ungar: Dental evidence for the diests of Plio-Pleistocene hominis. Am. J. Phys. Anthropol. 146, 47 (2011).

    Article  Google Scholar 

  65. D.B. Marshall, R.F. Cook, N.P. Padture, M.L. Oyen, A. Pajares, J.E. Bradby, I.E. Reimanis, R. Tandon, T.F. Page, G.M. Pharr, and B.R. Lawn: The compelling case for indentation as a functional exploratory and characterization tool. J. Am. Ceram. Soc. 98, 2671 (2015).

    Article  CAS  Google Scholar 

  66. B.W. Darvell, P.K.D. Lee, T.D.B. Yuen, and P.W. Lucas: A portable fracture toughness tester for biological materials. Meas. Sci. Technol. 7, 954 (1996).

    Article  CAS  Google Scholar 

  67. S. Valliappan and C.K. Chee: Aging degradation of mechanical structures. J. Mech. Mater. Struct. 3, 1923 (2008).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

All the authors would like to acknowledge the overall experience gained during their research and development through various commercially available nanoindentation machines without which this review would not have been possible. The authors (SG and GC) would like to acknowledge the support of the COST Action MP1303 as well as COST Action 15102 of the Horizon 2020. SG is also grateful to the Centre for Doctoral Training (CDT) in Ultra Precision at Cranfield University which is supported by the EPSRC via Grant Nos. EP/K503241/1 and EP/L016567/1 that provided the motivation for this work. Finally, all the authors are particularly grateful to the Principal Editor (Journal of Materials Research) and the reviewers for their extensive comments and recommendations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadimul Haque Faisal.

Additional information

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faisal, N.H., Ahmed, R., Goel, S. et al. Future of nanoindentation in archaeometry. Journal of Materials Research 33, 2515–2532 (2018). https://doi.org/10.1557/jmr.2018.280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.280

Navigation