Log in

Investigation on crack propagation in single crystal Ag with temperature dependence

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Crack propagation behaviors in a precracked single crystal Ag under mode I loading at different temperatures are studied by molecular dynamics simulation. The simulation results show that the crack propagation behaviors are sensitive to external temperature. At 0 K, the crack propagates in a brittle manner. Crack tip blunting and void generation are first observed followed by void growth and linkage with the main crack, which lead to the propagation of the main crack and brittle failure immediately without any microstructure evolution. As the temperature gets higher, more void nucleations and dislocation emissions occur in the crack propagation process. The deformation of the single crystal Ag can be considered as plastic deformation due to dislocation emissions. The crack propagation dynamics characterizing the microstructure evolution of atoms around the crack tip is also shown. Finally, it is shown that the stress of the single crystal Ag changes with the crack length synchronously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. C.B. Cui and H.G. Beom: Molecular dynamics simulations of edge cracks in copper and aluminum single crystals. Mater. Sci. Eng., A 609, 102 (2014).

    Article  CAS  Google Scholar 

  2. S.W. Xu and X.M. Deng: Nanoscale void nucleation and growth and crack tip stress evolution ahead of a growing crack in a single crystal. Nanotechnology 19, 115705 (2008).

    Article  Google Scholar 

  3. C.S. Becquart, D. Kim, J.A. Rifkin, and P.C. Clapp: Fracture properties of metals and alloys from molecular dynamics simulations. Mater. Sci. Eng., A 170, 87 (1993).

    Article  Google Scholar 

  4. F.F. Abraham and H. Gao: Anomalous ductile-brittle fracture behaviour in fcc crystals. Philos. Mag. Lett. 78, 307 (1998).

    Article  CAS  Google Scholar 

  5. H. Kimizuka, H. Kaburaki, F. Shimizu, and J. Li: Crack-tip dislocation nanostructures in dynamical fracture of fcc metals: A molecular dynamics study. J. Comput.-Aided Mater. Des. 10, 143 (2003).

    Article  CAS  Google Scholar 

  6. W.P. Wu and Z.Z. Yao: Molecular dynamics simulation of stress distribution and microstructure evolution ahead of a growing crack in single crystal nickel. Theor. Appl. Fract. Mech. 62, 67 (2012).

    Article  CAS  Google Scholar 

  7. H. Krull and H. Yuan: Suggestions to the cohesive traction–separation law from atomistic simulations. Eng. Fract. Mech. 78, 525 (2011).

    Article  Google Scholar 

  8. A. Needleman: An analysis of decohesion along an imperfect interface. Int. J. Fract. 42, 21 (1990).

    Article  Google Scholar 

  9. V. Yamakov, E. Saether, D.R. Phillips, and E.H. Glaessgen: Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum. J. Mech. Phys. Solids 54, 1899 (2006).

    Article  CAS  Google Scholar 

  10. Y. Cheng, Z.H. **, Y.W. Zhang, and H. Gao: On intrinsic brittleness and ductility of intergranular fracture along symmetrical tilt grain boundaries in copper. Acta Mater. 58, 2293 (2010).

    Article  CAS  Google Scholar 

  11. P. White: Molecular dynamic modelling of fatigue crack growth in aluminum using LEFM boundary conditions. Int. J. Fatigue 44, 141 (2012).

    Article  CAS  Google Scholar 

  12. Y. Cheng, M.X. Shi, and Y.W. Zhang: Atomistic simulation study on key factors dominating dislocation nucleation from a crack tip in two FCC materials: Cu and Al. Int. J. Solids Struct. 49, 3345 (2012).

    Article  CAS  Google Scholar 

  13. Y. Zhou, Z. Yang, and Z. Lu: Dynamic crack propagation in copper bicrystals grain boundary by atomistic simulation. Mater. Sci. Eng., A 599, 116 (2014).

    Article  CAS  Google Scholar 

  14. L.G. Sun, X.Q. He, J.B. Wang, and J. Lu: Deformation and failure mechanisms of nanotwinned copper films with a pre-existing crack. Mater. Sci. Eng., A 606, 334 (2014).

    Article  CAS  Google Scholar 

  15. G.P. Potirniche, M.F. Horstemeyer, P.M. Gullett, and B. Jelinek: Atomistic modelling of fatigue crack growth and dislocation structuring in FCC crystals. Proc. R. Soc. A 462, 3707 (2006).

    Article  CAS  Google Scholar 

  16. W.P. Wu and Z.Z. Yao: Influence of a strain rate and temperature on the crack tip stress and microstructure evolution of monocrystalline nickel: A molecular dynamics simulation. Strength Mater. 46, 164 (2014).

    Article  CAS  Google Scholar 

  17. J. Zhang and S. Ghosh: Molecular dynamics based study and characterization of deformation mechanisms near a crack in a crystalline material. J. Mech. Phys. Solids 61, 1670 (2013).

    Article  CAS  Google Scholar 

  18. P.B. Chowdhury, H. Sehitoglu, R.G. Rateick, and H.J. Maier: Modeling fatigue crack growth resistance of nanocrystalline alloys. Acta Mater. 61, 2531 (2013).

    Article  CAS  Google Scholar 

  19. M. Soleymani, M.H. Parsa, and H. Mirzadeh: Molecular dynamics simulation of stress field around edge dislocations in aluminum. Comput. Mater. Sci. 84, 83 (2014).

    Article  CAS  Google Scholar 

  20. M.S. Daw, S.M. Foiles, and M.I. Baskes: The embedded-atom method: A review of theory and applications. Mater. Sci. Rep. 9, 251 (1993).

    Article  CAS  Google Scholar 

  21. P.L. Williams, Y. Mishin, and J.C. Hamilton: An embedded-atom potential for the Cu–Ag system. Model. Simul. Mater. Sci. Eng. 14, 817 (2006).

    Article  CAS  Google Scholar 

  22. S. Nosé: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511 (1984).

    Article  Google Scholar 

  23. S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  24. A. Stukowski: Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

  25. D. Faken and H. Jónsson: Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2, 279 (1994).

    Article  CAS  Google Scholar 

  26. H. Tsuzuki, P.S. Branicio, and J.P. Rino: Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput. Phys. Commun. 177, 518 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This wok was fully supported by a grant from the City University of Hong Kong (Project No. 9680086), China Nature Science Foundation (11372281) and Zhejiang Province Nature Science Foundation (LY13A020003, LQ13A020002). The authors are grateful for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ao Qiao He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X.F., Wang, J.B., Sun, L.G. et al. Investigation on crack propagation in single crystal Ag with temperature dependence. Journal of Materials Research 30, 3553–3563 (2015). https://doi.org/10.1557/jmr.2015.325

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.325

Navigation