Log in

Interior crack initiation and growth behaviors and life prediction of a carburized gear steel under high cycle fatigue and very high cycle fatigue

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The axial loading test was performed to investigate the effect of carburizing on crack initiation and growth behaviors of a gear steel under high cycle fatigue (HCF) and very high cycle fatigue (VHCF). As a result, the carburized gear steel exhibits the duplex SN characteristics associated with different interior failure mechanisms. The failure process in the HCF regime can be described as inclusion → fisheye → final crack growth zone (FCGZ) → momentary fracture zone (MFZ), whereas that in the VHCF regime is described as inclusion → fine granular area (FGA) → fisheye → FCGZ → MFZ. Based on the definition of crack sizes at different transition stages and the evaluation of stress intensity factor, the models for predicting crack initiation and growth lives in the HCF regime and in the VHCF regime were established. The predicted crack initiation life tends to increase with the decrease of stress amplitude. In the VHCF regime, the crack initiation life associated with the FGA size is almost equivalent to the total fatigue life, whereas the crack growth life only occupies a tiny fraction. In view of the good agreement between the predicted and experimental results, the theoretical modeling method based on crack initiation and growth can be well used to predict the fatigue life of carburized steel with the interior inclusion-induced failure in the HCF regime and in the VHCF regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14

Similar content being viewed by others

References

  1. B. Chen, B.X. Huang, H. Liu, X.L. Li, M.T. Ni, and C. Lu: Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 6061 aluminum alloy. J. Mater. Res. 29, 3002–3010 (2014).

    Article  CAS  Google Scholar 

  2. Y.C. Peng, M.C. Zhang, J.X. Dong, and C.Y. Du: Investigations on carburizing mechanisms of Cr35Ni45Nb subjected to different service conditions in a high-temperature vacuum environment. J. Mater. Res. 30 (6), 841–851 (2015). doi: https://doi.org/10.1557/jmr.2015.46.

    Article  CAS  Google Scholar 

  3. C. Bathias: There is no infinite fatigue life in metallic materials. Fatigue Fract. Eng. Mater. Struct. 22, 559–565 (1999).

    Article  CAS  Google Scholar 

  4. K. Shiozawa, M. Murai, Y. Shimatani, and T. Yoshimoto: Transition of fatigue failure mode of Ni-Cr-Mo low-alloy steel in very high cycle regime. Int. J. Fatigue 32, 541–550 (2010).

    Article  CAS  Google Scholar 

  5. W. Li, Z.D. Sun, Z.Y. Zhang, H.L. Deng, and T. Sakai: Influence of case-carburizing and micro-defect on competing failure behaviors of Ni-Cr-W steel under gigacycle fatigue. Int. J. Fatigue 72, 66–74 (2015).

    Article  CAS  Google Scholar 

  6. S. Nishijima and K. Kanazawa: Step S-N curve and fisheye failure in gigacycle fatigue. Fatigue Fract. Eng. Mater. Struct. 22, 601–607 (1999).

    Article  CAS  Google Scholar 

  7. T. Sakai, Y. Sato, and N. Oguma: Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue. Fatigue Fract. Eng. Mater. Struct. 25, 765–732 (2002).

    Article  CAS  Google Scholar 

  8. Y. Murakami, N. Yokoyama, and J. Nagata: Mechanism of fatigue failure in ultralong life regime. Fatigue Fract. Eng. Mater. Struct. 25, 735–746 (2002).

    Article  CAS  Google Scholar 

  9. K. Shiozawa, Y. Morii, S. Nishino, and L. Lu: Subsurface crack initiation and propagation mechanism in high strength steel in a very high cycle fatigue regime. Int. J. Fatigue 28, 1521–1532 (2006).

    Article  CAS  Google Scholar 

  10. T. Sakai, M. Takeda, K. Shiozawa, Y. Ochi, M. Nakajima, and T. Nakamura: Experimental reconfirmation of characteristic S-N property for high carbon chromium bearing steel in wide life region in rotating bending. J. Soc. Mater. Sci., Jpn. 49, 779–785 (2000).

    Article  CAS  Google Scholar 

  11. K. Shiozawa, L. Lu, and S. Ishihara: S-N curve characteristics and subsurface crack initiation behavior in ultra-long life fatigue of a high carbon-chromium bearing steel. Fatigue Fract. Eng. Mater. Struct. 24, 781–790 (2001).

    Article  CAS  Google Scholar 

  12. Y. Murakami, T. Nomoto, and T. Ueda: Factors influencing the mechanism of surperlong fatigue failure in steels. Fatigue Fract. Eng. Mater. Struct. 22, 581–590 (1999).

    Article  CAS  Google Scholar 

  13. C.R. Sohar, A. Betzwar-Kotas, C. Gierl, B. Weiss, and H. Danninger: Fractographic evaluation of gigacycle fatigue crack nucleation and propagation of a high Cr alloyed cold work tool steel. Int. J. Fatigue 30, 2192–2199 (2008).

    Google Scholar 

  14. Y. Yu, J.L. Gu, B.Z. Bai, Y.B. Liu, and S.X. Li: Very high cycle fatigue mechanism of carbide-free bainite/martensite steel micro-alloyed with Nb. Mater. Sci. Eng., A 527, 212–217 (2009).

    Article  Google Scholar 

  15. Y.H. Nie, W.T. Fu, W.J. Hui, H. Dong, and Y.Q. Weng: Very high cycle fatigue behavior of 2000MPa ultra-high-strength spring steel with bainite-martensite duplex microstructure. Fatigue Fract. Eng. Mater. Struct. 32, 189–196 (2009).

    Article  CAS  Google Scholar 

  16. T. Nakamura, H. Oguma, and Y. Shinohara: The effect of vacuum-like environment inside sub-surface fatigue crack on the formation of ODA fracture surface in high strength steel. Procedia Eng. 2, 2121–2129 (2010).

    Article  Google Scholar 

  17. P. Grad, B. Reuscher, and A. Brodvanski: Mechanism of fatigue crack initiation and propagation in the very high cycle fatigue regime of high-strength steels. Scr. Mater. 67, 838–841 (2012).

    Article  CAS  Google Scholar 

  18. Y. Murakami and M. Endo: Effects of defects, inclusions and inhomogeneities on fatigue strength. Int. J. Fatigue 16, 163–182 (1994).

    Article  CAS  Google Scholar 

  19. K. Tanaka and Y. Akiniwa: Fatigue crack propagation behavior derived from S-N data in very high cycle regime. Fatigue Fract. Eng. Mater. Struct. 25, 775–784 (2002).

    Article  CAS  Google Scholar 

  20. Y.B. Liu, Y.D. Li, S.X. Li, and Z.G. Yang: Prediction of the S-N curves of high-strength steels in the very high cycle fatigue regime. Int. J. Fatigue 32, 1351–1357 (2010).

    Article  CAS  Google Scholar 

  21. H. Mayer, W. Haydn, R. Schuller, S. Issler, B. Furtner, and B. Bacher-Hochst: Very high cycle fatigue properties of bainitic high carbon-chromium steel. Int. J. Fatigue 31, 242–249 (2009).

    Article  CAS  Google Scholar 

  22. C. Sun, J. **e, A. Zhao, Z. Lei, and Y. Hong: A cumulative damage model for fatigue life estimation of high-strength steels in high-cycle and very-high-cycle fatigue regimes. Fatigue Fract. Eng. Mater. Struct. 35, 638–647 (2012).

    Article  CAS  Google Scholar 

  23. M.D. Chapetti: Prediction of threshold for very high cycle fatigue (N>107 cycles). Procedia Eng. 2, 257–264 (2010).

    Article  Google Scholar 

  24. A. Zhao, J. **e, C. Sun, Z. Lei, and Y. Hong: Prediction of threshold value for FGA formation. Mater. Sci. Eng., A 528, 6872–6877 (2011).

    Article  CAS  Google Scholar 

  25. W.D. Pilkey and D.F. Pilkey: Peterson’s Stress Concentration Factors, 3rd ed. (John Wiley and Sons Inc., Hoboken, New Jersey, 2008).

    Google Scholar 

  26. I. Marines-Garcia, P.C. Paris, H. Tada, C. Bathias, and D. Lados: Fatigue assessment using an integrated threshold curve method—Applications. Eng. Fract. Mech. 75, 1657–1665 (2008).

    Article  Google Scholar 

  27. K. Tanaka and T. Mura: A theory of fatigue crack initiation at inclusions. Metal. Trans. A 13A, 117–123 (1982).

    Article  CAS  Google Scholar 

  28. G. Venkataraman, Y.W. Chung, and T. Mura: Application of minimum energy formalism in a multiple slip band model for fatigue—I. Calculation of slip band spacings. Acta Metall. Mater. 39, 2621–2629 (1991).

    Article  CAS  Google Scholar 

  29. K.S. Chan: A microstructure-based fatigue-crack initiation model. Metall. Mater. Trans. A 34A, 43–57 (2003).

    Article  CAS  Google Scholar 

  30. A.S. Cheng and C. Laird: Fatigue life behavior of copper single crystals. Part II: Model for crack nucleation in persistent slip bands. Fatigue Fract. Eng. Mater. Struct. 4, 343–353 (1981).

    Article  CAS  Google Scholar 

  31. I.G. García, V. Mantič, and E. Graciani: Crack onset at the spherical-inclusion matrix interface. Application of a coupled stress and energy criterion. Procedia Mater. Sci. 3, 1336–1341 (2014).

    Article  Google Scholar 

  32. P.C. Paris, I. Marines-Garcia, R.W. Hertzberg, and J.D. Donald: The relationship of effective stress intensity, elastic modulus and Burgers-vector on fatigue crack growth as associated with “fisheye” gigacycle fatigue phenomena. In Proc.VHCF-3, Kyoto, Japan. (Society of Materials Science, Japan (JSMS), Kyoto, Japan, 2004).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foundation of China (Grant No. 51305027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Sun, Z., Deng, H. et al. Interior crack initiation and growth behaviors and life prediction of a carburized gear steel under high cycle fatigue and very high cycle fatigue. Journal of Materials Research 30, 2247–2257 (2015). https://doi.org/10.1557/jmr.2015.182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.182

Navigation