Log in

Reactions and reversible hydrogenation of single-walled carbon nanotube anions

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotube (SWNT) radical anions will react with tetrahydrofuran and generate ethylene, enolates, and a partially hydrogenated nanotube backbone. The experimental evidence suggests that there are sp3 C-H binding interactions. The total gravimetric content of hydrogen on a sample averages from 3.5% to 3.9% w/w, about four times the total amount observed for nanotubes hydrogenated via traditional Birch reduction reactions. Furthermore, the hydrogen desorbs at temperatures up to 400 °C less than those observed for the hydrogenated SWNTs formed after the Birch reduction. Finally, the first room temperature electron spin resonance spectrum of a nanotube radical ion is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Pekker, J.-P. Salvetat, E. Jakab, J.-M. Bonard, and L. Forro: Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J. Phys. Chem. B 105, 7938 (2001).

    Article  CAS  Google Scholar 

  2. F. Borondics, M. Bokor, P. Matus, K. Tompa, S. Pekker, and E. Jakab: Reductive functionalization of carbon nanotubes. Fullerenes Nanotubes Carbon Nanostruct. 13, 375 (2005).

    Article  CAS  Google Scholar 

  3. F. Borondics, E. Jakab, and S. Pekker: Functionalization of carbon nanotubes via dissolving metal reductions. J. Nanosci. Nanotechnol. 7, 1551 (2007).

    Article  CAS  Google Scholar 

  4. A. Penicaud, P. Poulin, A. Derre, E. Anglaret, and P. Petit: Spontaneous dissolution of a single-wall carbon nanotube salt. J. Am. Chem. Soc. 127, 8 (2004).

    Article  Google Scholar 

  5. F. Liang, L.B. Alemany, J.M. Beach, and W.E. Billups: Structure analyses of dodecylated single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 13941 (2005).

    Article  CAS  Google Scholar 

  6. F. Liang, J.M. Beach, K. Kobashi, A.K. Sadana, Y.I. Vega-Cantu, J.M. Tour, and W.E. Billups: In situ polymerization initiated by single-walled carbon nanotube salts. Chem. Mater. 18, 4764 (2006).

    Article  CAS  Google Scholar 

  7. J. Chattopadhyay, F. de Jesus Cortez, S. Chakraborty, N.K.H. Slater, and W.E. Billups: Synthesis of water-soluble PEGylated single-walled carbon nanotubes. Chem. Mater. 18, 5864 (2006).

    Article  CAS  Google Scholar 

  8. J. Chattopadhyay, A.K. Sadana, F. Liang, J.M. Beach, Y. **ao, R.H. Hauge, and W.E. Billups: Carbon nanotube salts. Arylation of single-wall carbon nanotubes. Org. Lett. 7, 4067 (2005).

    Article  CAS  Google Scholar 

  9. J.A. Teprovich, M.S. Wellons, R. Lascola, S.-J. Hwang, P.A. Ward, R.N. Compton, and R. Zidan: Synthesis and characterization of a lithium-doped fullerane (Lix-C60-Hy) for reversible hydrogen storage. Nano Lett. 12, 582 (2011).

    Article  Google Scholar 

  10. R.B. Bates, L.M. Kropskai, and D.E. Potter: Cycloreversions of anions from tetrahydrofurans. A convenient synthesis of lithium enolates of aldehydes. J. Org. Chem. 37, 560 (1972).

    Article  CAS  Google Scholar 

  11. J. Carnahan and W.D. Closson: Reaction of naphthalene dianions with tetrahydrofuran and ethylene. J. Org. Chem. 37, 4469 (1972).

    Article  CAS  Google Scholar 

  12. J. Clayden and S.A. Yasin: Pathways for decomposition of THF by organolithiums: The role of HMPA. New J. Chem. 26, 191 (2002).

    Article  CAS  Google Scholar 

  13. M.J. Heben, A.C. Dillon, K.E.H. Gilbert, P.A. Parilla, T. Gennett, J.L. Alleman, G.L. Hornyak, and K.M. Jones: Assessing the hydrogen adsorption capacity of single-wall carbon nanotube/metal composites, in Proceedings of the First International Workshop on Hydrogen in Materials and Vacuum Systems, edited by G.R. Myneni and S. Chattopadhyay (AIP Conf. Proc. 671, New York, NY, 2003) p. 77.

    Google Scholar 

  14. A.C. Dillon, T. Gennett, K.M. Jones, J.L. Alleman, P.A. Parilla, and M.J. Heben: A simple and complete purification of single-walled carbon nanotube materials. Adv. Mater. 11, 1354 (1999).

    Article  CAS  Google Scholar 

  15. T. Gennett, A.C. Dillon, J.L. Alleman, K.M. Jones, F.S. Hasoon, and M.J. Heben: Formation of single-wall carbon nanotube super-bundles. Chem. Mater. 12, 599 (2000).

    Article  CAS  Google Scholar 

  16. G.R. Stevenson, C.R. Wiedrlch, S.S. Zlgler, L. Echegoyen, and R. Maldonado: The thermochemistry of solid naphthalene anion salts and their interaction with water. J. Phys. Chem 87, 4995 (1983).

    Article  CAS  Google Scholar 

  17. H.C. Wang, C. Levin, and M. Szwarc: Comment on the communication: Production of hydrogen from interaction of an anion radical and water. J. Am. Chem. Soc. 100, 3969 (1978).

    Article  CAS  Google Scholar 

  18. C.J. Curtis, T. Gennett, C. Engtrakul, K. O’Neill, J.E. Ellis, and M.J. Heben: Mechanism of hydrogen storage on reduced carbon single-walled nanotubes. in The Hydrogen Economy, edited by A. Dillon, C. Moen, B. Choudhury, and J. Keller (Mater. Res. Soc. Symp. Proc. 1098, Warrendale, PA, 2008). 1098-HH04-04.

    Google Scholar 

  19. C.W. Bauschlicher: High coverages of hydrogen on a (10,0) carbon nanotube. Nano Lett. 1, 223 (2001).

    Article  CAS  Google Scholar 

  20. K.A. Park, K. Seo, and Y.H. Lee: Adsorption of atomic hydrogen on single-walled carbon nanotubes. J. Phys. Chem. B 109, 8967 (2005).

    Article  CAS  Google Scholar 

  21. A.D. Martino, R. Egger, K. Hallberg, and C.A. Balseiro: Spin-orbit coupling and electron spin resonance theory for carbon nanotubes. Phys. Rev. Lett. 88, 206402 (2002).

    Article  Google Scholar 

  22. J.P. Salvetat, T. Fehér, C. L’Huillier, F. Beuneu, and L. Forró: Anomalous electron spin resonance behavior of single-walled carbon nanotubes. Phys. Rev. B 72, 075440 (2005).

    Article  Google Scholar 

  23. S.V. Rosokha and J.K. Kochi: The question of aromaticity in open-shell cations and anions as ion-radical offsprings of polycyclic aromatic and antiaromatic hydrocarbons. J. Org. Chem. 71, 9357 (2006).

    Article  CAS  Google Scholar 

  24. A.C. Dillon, M. Yudasaka, and M.S. Dresselhaus: Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials. J. Nanosci. Nanotechnol. 4, 691 (2004).

    Article  CAS  Google Scholar 

  25. A. Claye, S. Rahman, J.E. Fischer, A. Sirenko, G.U. Sumanasekera, and P.C. Eklund: In situ Raman scattering studies of alkali-doped single wall carbon nanotubes. Chem. Phys. Lett. 333, 16 (2001).

    Article  CAS  Google Scholar 

  26. S. Gupta, M. Hughes, A.H. Windle, and J. Robertson: Charge transfer in carbon nanotube actuators investigated using in situ Raman spectroscopy. J. Appl. Phys. 95, 2038 (2004).

    Article  CAS  Google Scholar 

  27. A.M. Rao, P.C. Eklund, S. Bandow, A. Thess, and R.E. Smalley: Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 388, 257 (1997).

    Article  CAS  Google Scholar 

  28. G. Zhang, P. Qi, X. Wang, Y. Lu, D. Mann, X. Li, and H. Dai: Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes. J. Am. Chem. Soc. 128, 6026 (2006).

    Article  CAS  Google Scholar 

  29. A.C. Dillon, P.A. Parilla, J.L. Alleman, T. Gennett, K.M. Jones, and M.J. Heben: Systematic inclusion of defects in pure carbon single-wall nanotubes and their effect on the Raman D-band. Chem. Phys. Lett. 401, 522 (2005).

    Article  CAS  Google Scholar 

  30. B.N. Khare, M. Meyyappan, A.M. Cassell, C.V. Nguyen, and J. Han: Functionalization of carbon nanotubes using atomic hydrogen from a glow discharge. Nano Lett. 2, 73 (2002).

    Article  CAS  Google Scholar 

  31. B.N. Khare, M. Meyyappan, J. Kralj, P. Wilhite, M. Sisay, H. Imanaka, J. Koehne, and C.W. Bauschlicher: A glow-discharge approach for functionalization of carbon nanotubes. Appl. Phys. Lett. 81, 5237 (2002).

    Article  CAS  Google Scholar 

  32. G.P. Miller, J. Kintigh, E. Kim, P.F. Weck, S. Berber, and D. Tomanek: Hydrogenation of single-wall carbon nanotubes using polyamine reagents: Combined experimental and theoretical study. J. Am. Chem. Soc. 130, 2296 (2008).

    Article  CAS  Google Scholar 

  33. E. König, H. Musso, and U.-I. Zahorszky: Phenyldiimine in the reduction of diazonium salts by sodium tetrahydridoborate. Angew. Chem. Int. Ed. 11, 45 (1972).

    Google Scholar 

  34. L. Edmana, A. Herold, P. Jacobsson, M. Lelaurain, E. McRaeb, and B. Sundqvista: Sodium-sodium halide co-intercalated graphite: Chemistry, structure and electrical transport. J. Phys. Chem. Solids 60, 475 (1999).

    Article  Google Scholar 

  35. A. Metrot, D. Guerard, D. Billaud, and A. Herold: New results about the sodium-graphite system. Synth. Met. 1, 363 (1980).

    Article  CAS  Google Scholar 

  36. S. Pruvost, C. Herold, A. Herold, and P. Lagrange: Co-intercalation into graphite of lithium and sodium with an alkaline earth metal. Carbon 42, 1825 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this effort was provided by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy within the Center of Excellence on Hydrogen Sorption Materials as part of DOE’s National Hydrogen Storage Grand Challenge and by the Office of Science, Basic Energy Sciences, Materials Science and Engineering under subcontract DE-AC36-99GO10337 to NREL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Gennett.

Additional information

Address all correspondence to this author

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engtrakul, C., Curtis, C.J., Ellis, J.E. et al. Reactions and reversible hydrogenation of single-walled carbon nanotube anions. Journal of Materials Research 27, 2806–2811 (2012). https://doi.org/10.1557/jmr.2012.298

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.298

Navigation