Log in

Influence of Co content on stacking fault energy in Ni–Co base disk superalloys

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The influence of Co content on stacking fault energy (SFE) of the γ matrix in four Ni–Co base superalloys, including newly developed alloys, has been studied by utilizing high-resolution transmission electron microscopy. The results indicated the SFE was not linear with Co content of the γ matrix. The lowest SFE could be attained at around 34.0 at.% Co. This effect was attributed to variation of electron holes, saturated Co content in the matrix, and the effect of Co on the partition coefficient of other alloying elements. A high density of twins was related to low SFE and could improve the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

FIG. 1.
TABLE I.
TABLE II.
FIG. 2.
TABLE III.
FIG. 3.
TABLE IV.

Similar content being viewed by others

REFERENCES

  1. X.H. An, W.Z. Han, C.X. Huang, P. Zhang, G. Yang, S.D. Wu, and Z.F. Zhang: High strength and utilizable ductility of bulk ultrafine-grained Cu–Al alloys. Appl. Phys. Lett. 92, 201915 (2008).

    Article  Google Scholar 

  2. F. Ebrahimi, Z. Ahmed, and H. Li: Effect of stacking fault energy on plastic deformation of nanocrystalline face-centered cubic metals. Appl. Phys. Lett. 85, 3749 (2004).

    Article  CAS  Google Scholar 

  3. C.Y. Cui, Y.F. Gu, H. Harada, and A. Sato: Microstructure and yield strength of UDIMET 720Li alloyed with Co-16.9 wt pct Ti. Metall. Mater. Trans. A 36, 2921 (2005).

    Article  Google Scholar 

  4. C.Y. Cui, Y.F. Gu, D.H. **, T. Fukuda, and H. Harada: Phase constituents and compressive yield stress of Ni-Co base alloys. Mater. Trans. 49, 424 (2008).

    Article  CAS  Google Scholar 

  5. Y.F. Gu, T. Fukuda, C. Cui, H. Harada, A. Mitsuhashi, T. Yokokawa, J. Fujioka, Y. Koizumi, and T. Kobayashi: Comparison of mechanical properties of TMW alloys, new generation of cast-and-wrought superalloys for disk applications. Metall. Mater. Trans. A 40, 3047 (2009).

    Article  Google Scholar 

  6. Y.F. Gu, C. Cui, H. Harada, T. Fukuda, D. **, A. Mitsuhashi, K. Kato, T. Kobayashi, and J. Fujioka: Development of Ni-Co-base alloys for high-temperature disk applications, in Proceedings of the Eleventh International Symposium on Superalloys (Pennsylvania, PA, September 14–18, 2008, The Minerals, Metals and Materials Society, USA, 2008), p. pp53.

    Google Scholar 

  7. Y. Yuan, Y.F. Gu, C.Y. Cui, T. Osada, T. Yokokawa, and H. Harada: A novel strategy for the design of advanced engineering alloys—strengthening turbine disk superalloys via twinning structures. Adv. Eng. Mater. 13, 296 (2011).

    Article  CAS  Google Scholar 

  8. Q. Yu, Z.W. Shan, J. Li, X. Huang, L. **ao, J. Sun, and E. Ma: Strong crystal size effect on deformation twinning. Nature 463, 335 (2010).

    Article  CAS  Google Scholar 

  9. B.B. Rath, M.A. Imam, and C.S. Pande: Nucleation and growth of twin interfaces in fcc metals and alloys. Mater. Phys. Mech. 1, 61 (2000).

    CAS  Google Scholar 

  10. T.H. Blewitt, P.R. Coltman, and J.K. Redman: Low-temperature deformation of copper single crystals. J. Appl. Phys. 28, 651 (1957).

    Article  CAS  Google Scholar 

  11. G.T. Gray III: Deformation twinning in Al-4.8 wt% Mg. Acta Metall. 36, 1745 (1988).

    Article  CAS  Google Scholar 

  12. J.G. Zheng, Q. Li, Z.G. Liu, D. Feng, and G. Frommeyer: Complex stacking fault energy of Cr-alloyed γ-TiA1. Phys. Lett. A 196, 125 (1994).

    Article  CAS  Google Scholar 

  13. L.C. Qin, D.X. Li, and K.H. Kuo: An HRTEM study of the defects in ZnS. Philos. Mag. A 53, 543 (1986).

    Article  CAS  Google Scholar 

  14. Z.L. Zhang, W. Sigle, and W. Kurtz: HRTEM and EELS study of screw dislocation cores in SrTiO3. Phys. Rev. B 69, 144103 (2004).

    Article  Google Scholar 

  15. R.J. Hebert, J.H. Perepezko, H. Rösner, and G. Wilde: Dislocation formation during deformation-induced synthesis of nanocrystals in amorphous and partially crystalline amorphous Al88Y7Fe5 alloy. Scr. Mater. 54, 25 (2006).

    Article  CAS  Google Scholar 

  16. S.J. Zhou, D.L. Preston, P.S. Lomdahl, and D.M. Beazley: Large-scale molecular dynamics simulations of dislocation intersection in Copper. Science 279, 1525 (1998).

    Article  CAS  Google Scholar 

  17. E. Aerts, P. Delavignette, R. Siems, and S. Amelinckx: Stacking fault energy in silicon. J. Appl. Phys. 33, 3078 (1962).

    Article  CAS  Google Scholar 

  18. C. Feng and B.S.J. Kang: A transparent indenter measurement method for mechanical property evaluation. Exp. Mech. 46, 91 (2006).

    Article  Google Scholar 

  19. J.A. Lee: Effects of the density of states on the stacking fault energy and hydrogen embrittlement of transition metals and alloys, in Proceedings of the 2008 International Hydrogen Conference (Grand Teton Natl. Park, WY, September 7–10, 2008), p. 678.

    Google Scholar 

  20. X.L. Nie, R.H. Wang, Y.Y. Ye, Y.M. Zhou, and D.S. Wang: Calculations of stacking fault energy for fcc metals and their alloys based on an improved embedded-atom method. Solid State Commun. 96, 729 (1995).

    Article  CAS  Google Scholar 

  21. X.S. **e, G.L. Chen, P.J. Mchugh, and J.K. Tien: Including stacking fault energy into the resisting stress model for creep of particle strengthened alloys. Scr. Metall. 16, 483 (1982).

    Article  CAS  Google Scholar 

  22. Z.A. Yang, Y.T. **ao, and C.X. Shi: The role of cobalt in the high temperature creep of γ’-strengthened nickel-based superalloys. Mater. Sci. Eng., A 101, 65 (1988).

    Article  Google Scholar 

  23. I.R. Harris, I.L. Dillamore, R.E. Smallman, and B.E.P. Beeston: The influence of d-band structure on stacking fault energy. Philos. Mag. 14, 325 (1966).

    Article  CAS  Google Scholar 

  24. L. Pauling: The nature of the interatomic forces in metals. Phys. Rev. 54, 899 (1938).

    Article  CAS  Google Scholar 

  25. X.X. Yu and C.Y. Wang: The effect of alloying elements on the dislocation climbing velocity in Ni: A first-principles study. Acta Mater. 57, 5914 (2009).

    Article  CAS  Google Scholar 

  26. R.G. Barrows and J.B. Newkirk: A modified system for predicting s formation. Metall. Trans. 3, 2889 (1972).

    Article  CAS  Google Scholar 

  27. A.A. Ogwu and T.J. Davies: Effect of the electronic state, stoichiometry and ordering energy on the ductility of transition metal-based intermetallics. J. Mater. Sci. 28, 847 (1993).

    Article  CAS  Google Scholar 

  28. T.C. Schulthess, P.E.A. Turchi, A. Gonis, and T.G. Nieh: Systematic study of stacking fault energies of random Al-based alloys. Acta Mater. 46, 2215 (1998).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Prof. L.C. Qin at University of North Carolina, Chapel Hill, NC, for discussion and help to conduct HRTEM experiments. Y. Yuan is indebted to Dr. T. Nagai for the lecture of JEM 2100F at National Institute for Materials Science, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Y., Gu, Y., Cui, C. et al. Influence of Co content on stacking fault energy in Ni–Co base disk superalloys. Journal of Materials Research 26, 2833–2837 (2011). https://doi.org/10.1557/jmr.2011.346

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.346

Keywords

Navigation