Log in

High-strength bulk Al-based bimodal ultrafine eutectic composite with enhanced plasticity

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An in situ bulk ultrafine bimodal eutectic Al-Cu-Si composite was synthesized by solidification. This heterostructured composite with microstructural length scale hierarchy in the eutectic microstructure, which combines an ultrafine-scale binary cellular eutectic (α-Al + Al2Cu) and a nanometer-sized anomalous ternary eutectic (α-Al + Al2Cu + Si), exhibits high fracture strength (1.1 ± 0.1 GPa) and large compressive plastic strain (11 ± 2%) at room temperature. The improved compressive plasticity of the bimodal-nanoeutectic composite originates from homogeneous and uniform distribution of inhomogeneous plastic deformation (localized shear bands), together with strong interaction between shear bands in the spatially heterogeneous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. He, J. Eckert, W. Löser, and L. Schultz: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).

    Article  CAS  Google Scholar 

  2. J.M. Park, S.W. Sohn, T.E. Kim, K.B. Kim, W.T. Kim, and D.H. Kim: Nanostructure-dendrite composites in the Fe-Zr binary alloy system exhibiting high strength and plasticity. Scr. Mater. 57, 1153 (2007).

    Article  CAS  Google Scholar 

  3. D.V. Louzguine, H. Kato, and A. Inoue: High-strength hypereu-tectic Ti-Fe-Co bulk alloy with good ductility. Philos. Mag. Lett. 84, 359 (2004).

    Article  CAS  Google Scholar 

  4. E. Ma: Controlling plastic instability. Nat. Mater. 2, 7 (2003).

    Article  CAS  Google Scholar 

  5. J.M. Park, T.E. Kim, S.W. Sohn, D.H. Kim, K.B. Kim, W.T. Kim, and J. Eckert: High strength Ni-Zr binary ultrafine eutectic-dendrite composite with large plastic deformability. Appl. Phys. Lett. 93, 031903 (2008).

    Article  Google Scholar 

  6. H. Ma, L.L. Shi, J. Xu, and E. Ma: Chill-cast in situ composites in the pseudo- ternary Mg-(Cu,Ni)-Y glass-forming system: Microstructure and compressive properties. J. Mater. Res. 22, 314 (2007).

    Article  CAS  Google Scholar 

  7. J.H. Han, K.B. Kim, S. Yi, J.M. Park, S.W. Sohn, T.E. Kim, D.H. Kim, J. Das, and J. Eckert: Formation of a bimodal eutectic structure in Ti–Fe–Sn alloys with enhanced plasticity. Appl. Phys. Lett. 93, 141901 (2008).

    Article  Google Scholar 

  8. D.V. Louzguine, L.V. Louzguina, H. Kato, and A. Inoue: Investigation of Ti-Fe-Co bulk alloys with high strength and enhanced ductility. Acta Mater. 53, 2009 (2005).

    Article  Google Scholar 

  9. J.M. Park, S.W. Sohn, D.H. Kim, K.B. Kim, W.T. Kim, and J. Eckert: Propagation of shear bands and accommodation of shear strain in the Fe56Nb4Al40 ultrafine eutectic-dendrite com-posite. Appl. Phys. Lett. 92, 091910 (2008).

    Article  Google Scholar 

  10. J. Das, K.B. Kim, F. Baier, W. Löser, and J. Eckert: High-strength Ti-base ultrafine eutectic with enhanced ductility. Appl. Phys. Lett. 87, 161907 (2005).

    Article  Google Scholar 

  11. J.M. Park, D.H. Kim, K.B. Kim, and W.T. Kim: Deformation-induced rotational eutectic colonies containing length-scale het-erogeneity in an ultrafine eutectic Fe83Ti7Zr6B4 alloy. Appl. Phys. Lett. 91, 131907 (2007).

    Article  Google Scholar 

  12. D.V. Louzguine, H. Kato, L.V. Louzguina, and A. Inoue: High-strength binary Ti-Fe bulk alloys with enhanced ductility. J. Mater. Res. 19, 3600 (2004).

    Article  CAS  Google Scholar 

  13. L. Shi, H. Ma, T. Liu, J. Xu, and E. Ma: Microstructure and compressive properties of chill-cast Mg-Al-Ca alloys. J. Mater. Res. 21, 613 (2006).

    Article  CAS  Google Scholar 

  14. J.M. Park, K.B. Kim, M.H. Lee, W.T. Kim, J. Eckert, and D.H. Kim: High strength ultrafine eutectic Fe-Nb-Al composites with enhanced plasticity. Intermetallics 16, 642 (2008).

    Article  CAS  Google Scholar 

  15. D.V. Louzguine, L.V. Louzguina, H. Kato, and A. Inoue: Investigation of high strength metastable hypereutectic ternary Ti–Fe–Co and quaternary Ti–Fe–Co–(V, Sn) alloys. J. Alloys Compd. 434–435, 32 (2007).

    Article  Google Scholar 

  16. J.M. Park, D.H. Kim, K.B. Kim, M.H. Lee, W.T. Kim, and J. Eckert: Influence of heterogeneities with different length scale on the plasticity of Fe-base ultrafine eutectic alloys. J. Mater. Res. 23, 2003 (2008).

    Article  CAS  Google Scholar 

  17. L.F. Mondolfo: Alluminum Alloys: Structure and Properties (Butterworths, London, UK1976).

    Google Scholar 

  18. Y. Li, K. Georgarakis, S. Pang, J. Antonowicz, F. Charlot, A. Lemoulec, T. Zhang, and A.R. Yavari: AlNiY chill-zone alloys with good mechanical properties. J Alloys Compd. 447, 346 (2009).

    Article  Google Scholar 

  19. B.A. Sun, M.X. Pan, D.Q. Zhao, W.H. Wang, X.K. **, M.T. Sandor, and Y. Wu: Aluminum-rich bulk metallic glasses. Scr. Mater. 59, 1159 (2008).

    Article  CAS  Google Scholar 

  20. T.T. Sasaki, T. Mukai, and K. Hono: A high-strength bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Scr. Mater. 57, 189 (2007).

    Article  CAS  Google Scholar 

  21. P. Villars, A. Prince, and H. Okamoto: Handbook of Ternary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1995).

    Google Scholar 

  22. JCPDFWIN: Version 2.2 (JCPDS, International Center for Diffraction Data, Newton Square, PA, 2001).

    Google Scholar 

  23. R. Elliott: Eutectic Solidification Processing: Crystalline and Glassy Alloys (Butterworths, London, UK, 1983).

    Google Scholar 

  24. K.A. Jackson and J.D. Hunt: Lamellar and rod eutectic growth. Trans. Metall. Soc. AIME 236, 1129 (1966).

    CAS  Google Scholar 

  25. P.L. Ferrandini, F.L.G.U. Araujo, W.W. Batista, and R. Caram: Growth and characterization of the NiAl-NiAlNb eutectic structure. J. Cryst. Growth 275, e147 (2005).

    Article  CAS  Google Scholar 

  26. J.H. Han, K.B. Kim, S. Yi, J.M. Park, D.H. Kim, S. Pauly, and J. Eckert: Influence of a bimodal eutectic structure on the plastic-ity of (Ti70.5Fe29.5)91Sn9 ultrafine composite. Appl. Phys. Lett. 93, 201906 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Hyang Kim.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to https://www.mrs.org/jmr_policy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.M., Mattern, N., Kühn, U. et al. High-strength bulk Al-based bimodal ultrafine eutectic composite with enhanced plasticity. Journal of Materials Research 24, 2605–2609 (2009). https://doi.org/10.1557/jmr.2009.0297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0297

Navigation