Log in

Self-stabilized fibronectin films at the air/water interface

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Fibronectin (FN) is a mediator molecule, which can connect cell receptors to the extracellular matrix (ECM) in tissues. This function is highly desirable for biomaterial surfaces in order to support cell adhesion. Controlling the fibronectin adsorption profile on substrates is challenging because of possible conformational changes after deposition, or due to displacement by secondary proteins from the culture medium. Here, we aim to develop a method to realize self-stabilized ECM glycoprotein layers with preserved native secondary structure on substrates. Our concept is the assembly of FN layers at the air-water (A-W) interface by spreading FN solution as droplets on the interface and transfer of the layer by the Langmuir-Schäfer (LS) method onto a substrate. It is hypothesized that 2D confinement and high local concentration at A-W interface supports FN self-interlinking to form cohesive films. Rising surface pressure with time, plateauing at 10.5 mN·m-1 (after 10 hrs), indicated that FN was self-assembling at the A-W interface. In situ polarization-modulation infrared reflection absorption spectroscopy of the layer revealed that FN maintained its native anti-parallel β-sheet structure after adsorption at the A-W interface. FN self-interlinking and elasticity was shown by the increase in elastic modulus and loss modulus with time using interfacial rheology. A network-like structure of FN films formed at the A-W interface was confirmed by atomic force microscopy after LS transfer onto Si-wafer. FN films consisted of native, globular FN molecules self-stabilized by intermolecular interactions at the A-W interface. Therefore, the facile FN self-stabilized network-like films with native anti-parallel β-sheet structure produced here, could serve as stable ECM protein coatings to enhance cell attachment on in vitro cell culture substrates and planar implant materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Scharnagl, S. Lee, B. Hiebl, A. Sisson and A. Lendlein, Journal of Materials Chemistry 20 (40), 8789–8802 (2010).

    Article  CAS  Google Scholar 

  2. C. Yang, F. W. DelRio, H. Ma, A. R. Killaars, L. P. Basta, K. A. Kyburz and K. S. Anseth, Proceedings of the National Academy of Sciences 113 (31), E4439–E4445 (2016).

    Article  CAS  Google Scholar 

  3. O. D. Krishna and K. L. Kiick, Biopolymers 94 (1), 32–48 (2010).

    Article  CAS  Google Scholar 

  4. L. Renner, T. Pompe, K. Salchert and C. Werner, Langmuir: the ACS journal of surfaces and colloids 21 (10), 4571–4577 (2005).

    Article  CAS  Google Scholar 

  5. E. A. Vogler, Biomaterials 33 (5), 1201–1237 (2012).

    Article  CAS  Google Scholar 

  6. B. Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter, Molecular biology of the cell., 15th ed. (Garland Science, 2002).

    Google Scholar 

  7. E. Pauthe, J. Pelta, S. Patel, D. Lairez and F. Goubard, Biochimica et biophysica acta 1597 (1), 12–21 (2002).

    Article  CAS  Google Scholar 

  8. J. Xu and D. Mosher, in The Extracellular Matrix: an Overview, edited by R. P. Mecham (Springer Berlin Heidelberg, Berlin, Heidelberg, 2011), pp. 41–75.

  9. S. Bierbaum and D. Scharnweber, in Comprehensive Biomaterials, edited by P. Ducheyne (Elsevier, Oxford, 2011), pp. 127–153.

  10. A. W. Feinberg and K. K. Parker, Nano Letters 10 (6), 2184–2191 (2010).

    Article  CAS  Google Scholar 

  11. S. Ahn, L. F. Deravi, S. J. Park, B. E. Dabiri, J. S. Kim, K. K. Parker and K. Shin, Advanced materials (Deerfield Beach, Fla.) 27 (18), 2838–2845 (2015).

    Article  CAS  Google Scholar 

  12. T. Vijaya Bhaskar, S. Saretia, T. Roch, A.-C. Schöne, F. Rottke, K. Kratz, W. Wang, N. Ma, B. Schulz and A. Lendlein, Polymers for Advanced Technologies 28 (2016).

  13. T. Bhuvanesh, R. Machatschek, L. Lysyakova, K. Kratz, B. Schulz, N. Ma and A. Lendlein, Biomedical materials (Bristol, England) 14 (2), 024101 (2019).

    Article  CAS  Google Scholar 

  14. M. E. Brennan-Fournet, M. Huerta, Y. Zhang, G. Malliaras and R. M. Owens, Journal of Materials Chemistry B 3 (47), 9140–9147 (2015).

    Article  CAS  Google Scholar 

  15. A. Barth and C. Zscherp, Quarterly reviews of biophysics 35 (4), 369–430 (2002).

    Article  CAS  Google Scholar 

  16. B. Sjöberg, M. Eriksson, E. Österlund, S. Pap and K. Österlund, European Biophysics Journal 17 (1), 5–11 (1989).

    Article  Google Scholar 

  17. L. Baujard-Lamotte, S. Noinville, F. Goubard, P. Marque and E. Pauthe, Colloids and surfaces. B, Biointerfaces 63 (1), 129–137 (2008).

    Article  CAS  Google Scholar 

  18. A. Wittemann and M. Ballauff, Physical Chemistry Chemical Physics 8 (45), 5269–5275 (2006).

    Article  CAS  Google Scholar 

  19. E. Klotzsch, M. Smith, K. Kubow, S. Muntwyler, W. Little, F. Beyeler, D. Gourdon, B. Nelson and V. Vogel, Proceedings of the National Academy of Sciences of the United States of America 106, 18267–18272 (2009).

    Article  CAS  Google Scholar 

  20. P. K. Viji Babu, C. Rianna, U. Mirastschijski and M. Radmacher, Scientific Reports 9 (1), 12317 (2019).

    Article  Google Scholar 

  21. A. S. Malcolm, A. F. Dexter and A. P. Middelberg, Langmuir: the ACS journal of surfaces and colloids 22 (21), 8897–8905 (2006).

    Article  CAS  Google Scholar 

  22. N. M. Tooney, M. W. Mosesson, D. L. Amrani, J. F. Hainfeld and J. S. Wall, The Journal of cell biology 97 (6), 1686–1692 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lendlein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuvanesh, T., Machatschek, R., Liu, Y. et al. Self-stabilized fibronectin films at the air/water interface. MRS Advances 5, 609–620 (2020). https://doi.org/10.1557/adv.2019.401

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.401

Navigation