Log in

The influence of pH on the molecular degradation mechanism of PLGA

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Poly[(rac-lactide)-co-glycolide] (PLGA) is used in medicine to provide mechanical support for healing tissue or as matrix for controlled drug release. The properties of this copolymer depend on the evolution of the molecular weight of the material during degradation, which is determined by the kinetics of the cleavage of hydrolysable bonds. The generally accepted description of the degradation of PLGA is a random fragmentation that is autocatalyzed by the accumulation of acidic fragments inside the bulk material. Since mechanistic studies with lactide oligomers have concluded a chain-end scission mechanism and monolayer degradation experiments with polylactide found no accelerated degradation at lower pH, we hypothesize that the impact of acidic fragments on the molecular degradation kinetics of PLGA is overestimated. By means of the Langmuir monolayer degradation technique, the molecular degradation kinetics of PLGA at different pH could be determined. Protons did not catalyze the degradation of PLGA. The molecular mechanism at neutral pH and low pH is a combination of random and chainend-cut events, while the degradation under strongly alkaline conditions is determined by rapid chainend cuts. We suggest that the degradation of bulk PLGA is not catalyzed by the acidic degradation products. Instead, increased concentration of small fragments leads to accelerated mass loss via fast chain-end cut events. In the future, we aim to substantiate the proposed molecular degradation mechanism of PLGA with interfacial rheology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Ma, S. Oyamada, T. Wu, M. P. Robich, H. Wu, X. Wang, B. Buchholz, S. McCarthy, C. F. Bianchi, F. W. Sellke and R. Laham, Journal of Biomedical Materials Research Part A 96A (4), 632–638 (2011).

    Article  CAS  Google Scholar 

  2. S. Mathew, S. Baudis, A. T. Neffe, M. Behl, C. Wischke and A. Lendlein, European Journal of Pharmaceutics and Biopharmaceutics 95, 18–26 (2015).

    Article  CAS  Google Scholar 

  3. X. Zhu and R. D. Braatz, Journal of Biomedical Materials Research Part A 103 (7), 2269–2279 (2015).

    Article  CAS  Google Scholar 

  4. B. Laycock, M. Nikolić, J. M. Colwell, E. Gauthier, P. Halley, S. Bottle and G. George, Progress in Polymer Science 71 (Supplement C), 144–189 (2017).

    Article  CAS  Google Scholar 

  5. C. F. van Nostrum, T. F. J. Veldhuis, G. W. Bos and W. E. Hennink, Polymer 45 (20), 6779–6787 (2004).

    Article  Google Scholar 

  6. A. Kulkarni, J. Reiche and A. Lendlein, Surface and Interface Analysis 39 (9), 740–746 (2007).

    Article  CAS  Google Scholar 

  7. S. J. de Jong, E. R. Arias, D. T. S. Rijkers, C. F. van Nostrum, J. J. Kettenes-van den Bosch and W. E. Hennink, Polymer 42 (7), 2795–2802 (2001).

    Article  Google Scholar 

  8. M. C. Hamoudi-Ben Yelles, V. Tran Tan, F. Danede, J. F. Willart and J. Siepmann, Journal of Controlled Release 253, 19–29 (2017).

    Article  CAS  Google Scholar 

  9. J. Siepmann, K. Elkharraz, F. Siepmann and D. Klose, Biomacromolecules 6 (4), 2312–2319 (2005).

    Article  CAS  Google Scholar 

  10. A. C. Schone, T. Roch, B. Schulz and A. Lendlein, J R Soc Interface 14 (130) (2017).

    Article  Google Scholar 

  11. H. C. Kim, H. Lee, H. Jung, Y. H. Choi, M. Meron, B. Lin, J. Bang and Y.-Y. Won, Soft Matter 11 (28), 5666–5677 (2015).

    Article  CAS  Google Scholar 

  12. J. Li, P. Nemes and J. Guo, Journal of Biomedical Materials Research Part B: Applied Biomaterials 106 (3), 1129–1137 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lendlein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machatschek, R., Schulz, B. & Lendlein, A. The influence of pH on the molecular degradation mechanism of PLGA. MRS Advances 3, 3883–3889 (2018). https://doi.org/10.1557/adv.2018.602

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.602

Navigation