Log in

Oxidation of Si nanocrystals fabricated by ultra-low energy ion implantation in thin SiO2 layers

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The effect of annealing in diluted oxygen on the structural characteristics of thin silicon dioxide layers with embedded Si nanocrystals fabricated by ultra-low energy ion implantation (1 keV) is reported. The nanocrystal characteristics (size, density, coverage) have been measured by spatially resolved Electron Energy Loss Spectroscopy using the spectrum-imaging mode of a Scanning Transmission Electron Microscope. Their evolution has been studied as a function of the annealing duration under N2+O2 at 900°C. An extended spherical Deal-Grove model for the self-limiting oxidation of embedded silicon nanocrystals has been carried out. It shows that stress effects, due to the deformation of the oxide, slows down the chemical oxidation rate and leads to a self-limiting oxide growth. The model predictions show a good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Tiwari, F. Rana, H. I. Hanafi, A. Hartstein, E. F. Crabbé and K. Chan, Appl. Phys. Lett. 68, 1377 (1996).

    Article  CAS  Google Scholar 

  2. S. Tiwari, F. Rana, K. Chan, L. Shi and H. Hanafi, Appl. Phys. Lett. 69, 1232 (1996).

    Article  CAS  Google Scholar 

  3. G. Ammendola, M. Vulpio, M. Bileci, N. Nastasi, C. Gerardi, G. Renna, I. Crupi, G. Nicotra, and S. Lombardo J. Vac. Sci. Technol. B 20, 2075 (2002).

    Article  CAS  Google Scholar 

  4. Y. C. King, T. J. King and C. Hu, IEEE Trans. Electron Devices Meet. ED–48, 696 (2001).

    Article  Google Scholar 

  5. P. Normand, D. Tsoukalas, E. Kapetanakis, J. van den Berg, D. G. Armour, J. Stoemenos and C. Vieu, Electrochem. and Solid State Lett. 88, 1 (1998).

    Google Scholar 

  6. P. Normand, K. Beltsios, E. Kapetanakis, D. Tsoukalas, T. Travlos, J. Stoemenos, J. Van Den Berg, S. Zhang, C. Vieu, H. Launois, J. Gautier, F. Jourdan and L. Palun, Nucl. Inst. and Meth. in Phys. Res. B, 178, 74 (2001).

    Article  CAS  Google Scholar 

  7. C. Bonafos, M. Carrada, N. Cherkashin, H. Coffin, D. Chassaing, G. Ben Assayag and A. Claverie, J. Appl. Phys. 95, 5696 (2004).

    Article  CAS  Google Scholar 

  8. P. Normand, D. Tsoukalas, and K. Beltsios, Appl. Phys. Lett. 83, 168 (2003).

    Article  CAS  Google Scholar 

  9. D. B. Kao, J. P. McVittie, W. D. Nix, and K. C. Saraswat, IEEE Trans. Electron Devices, ED–35, 25 (1988).

    Article  Google Scholar 

  10. J. Omachi, R. Nakamura, K. Nishiguchi and S Oda., MRS Symp. Proc. 638 (2001).

    Google Scholar 

  11. Y. Chen, Y. Chen, Microelectron. Engeneer., 57–58, 897 (2001).

    Article  Google Scholar 

  12. B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770 (1965).

    Article  CAS  Google Scholar 

  13. L. Reimer in “Energy-Filtering Transmission Electron Microscopy”, Ed. L. Reimer (Springer, New-York) (1995), p.347.

  14. C. Jeanguillaume, C. Colliex, Ultramicroscopy 28, 252 (1989).

    Article  Google Scholar 

  15. G. Ben Assayag, C. Bonafos, M. Carrada, A. Claverie, P. Normand, and D. Tsoukalas, Appl. Phys. Lett. 82, 200 (2003).

    Article  CAS  Google Scholar 

  16. T. Müller, C. Bonafos, K.-H. Heinig, M. Tencé, H. Coffin, N. Cherkashin, G. Ben Assayag, S. Schamm, G. Zanchi, C. Colliex, W. Möller, A. Claverie, Appl. Phys. Lett. 85, 2373 (2004).

    Article  Google Scholar 

  17. C. Bonafos, N. Cherkashin, M. Carrada, H. Coffin, G. Ben Assayag, S. Schamm, P. Dimi-trakis, P. Normand, A. Argawal and A. Claverie, MRS 2004, Fall meeting, this proceeding.

    Google Scholar 

  18. A. Wellner, V. Paillard, H. Coffin, N. Cherkashin, C. Bonafos, Appl. Phys. Lett. 96, 2403 (2004).

    CAS  Google Scholar 

  19. W. Paul and D. M. Warschauer, Eds. Solids under Pressure, New-York, Mc Graw-Hill (1963).

    Google Scholar 

  20. E. B. Dane and F. Birch, J. Appl. Phys. 9, 669 (1938).

    Article  CAS  Google Scholar 

  21. A. Fargeix and G. Ghibaudo. Appl. Phys. 54, 7153 (1983).

    Article  CAS  Google Scholar 

  22. A. Wellner, V. Paillard, N. Cherkashin, C. Bonafos, H. Coffin, B. Schmidt and K. H. Heinig and A. Claverie, J. Appl. Phys. 94, 5639 (2003).

    Article  CAS  Google Scholar 

  23. J. Grisolia, G. Ben Assayag, B. de Mauduit, A. Claverie, R.E. Kroon, J.H. Neethling, MRS Symp. Proc. 681E (2001).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the European Commission through the Growth project G5RD/2000/00320–NEON (Nanoparticles for Electronics). The authors want to thank V. Soncini from ST Microelectronics Agrate for the oxidised wafers and A. Agarwal from Axcelis Technologies Inc. for the implantation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coffin, H., Bonafos, C., Schamm, S. et al. Oxidation of Si nanocrystals fabricated by ultra-low energy ion implantation in thin SiO2 layers. MRS Online Proceedings Library 830, 311–316 (2004). https://doi.org/10.1557/PROC-830-D6.6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-830-D6.6

Navigation