Log in

Determination of the Nitrogen Acceptor Ionization Energy in Zinc Oxide by Photoluminescence Spectroscopy

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Photoluminescence (PL) experiments performed on bulk ZnO crystals are used to establish the ionization energy of the substitutional nitrogen acceptor. The temperature dependence of the nitrogen-related electron-acceptor (e,A0) emission band has been monitored in as-grown single crystals. A lineshape analysis of this band is used to determine the acceptor ionization energy. The temperature variation of the ZnO band gap was included in our analysis and the low-temperature acceptor ionization energy for substitutional nitrogen at an oxygen site in ZnO was found to be EA = 209 ± 3 meV. Electron paramagnetic resonance and Hall-effect measurements were also used to characterize these bulk ZnO samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Jpn. J. Appl. Phys. 36, L1453 (1997).

    Article  CAS  Google Scholar 

  2. M. Joseph, H. Tabata, and T. Kawai, Jpn. J. Appl. Phys. 38, L1205 (1999).

    Article  CAS  Google Scholar 

  3. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).

    Article  CAS  Google Scholar 

  4. A. Zeuner, H. Alves, D. M. Hofmann, B. K. Meyer, A. Hoffmann, U. Haboeck, M. Strassburg, and M. Dworzak, Phys. Stat. Sol. (b) 234, R7 (2002).

    Article  CAS  Google Scholar 

  5. K. Tamura, T. Makino, A. Tsukazaki, M. Sumiya, S. Fuke, T. Furumochi, M. Lippmaa, C. H. Chia, Y. Segawa, H. Koinuma, and M. Kawasaki, Solid State Commun. 127, 265 (2003).

    Article  CAS  Google Scholar 

  6. K. Thonke, Th. Gruber, N. Teofilov, R. Schonfelder, A. Waag, and R. Sauer, Physica B 308–310, 945 (2001).

    Article  Google Scholar 

  7. N. Y. Garces, N. C. Giles, L. E. Halliburton, G. Cantwell, D. B. Eason, D. C. Reynolds, and D. C. Look, Appl. Phys. Lett. 80, 1334 (2002).

    Article  CAS  Google Scholar 

  8. N. Y. Garces, Lijun Wang, N. C. Giles, L. E. Halliburton, G. Cantwell, and D. B. Eason, J. Appl. Phys. 94, 519 (2003).

    Article  CAS  Google Scholar 

  9. H. Barry Bebb and E. W. Williams, in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic, New York, 1972), Vol. 8, pp. 330–331.

    Google Scholar 

  10. Lijun Wang and N. C. Giles, J. Appl. Phys. 94, 973 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Air Force Office of Scientific Research (Grant No. F49620-02-1-0254).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Garces, N.Y., Halliburton, L.E. et al. Determination of the Nitrogen Acceptor Ionization Energy in Zinc Oxide by Photoluminescence Spectroscopy. MRS Online Proceedings Library 799, 251–256 (2003). https://doi.org/10.1557/PROC-799-Z5.43

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-799-Z5.43

Navigation