Log in

Hexagonal Lattice Photonic Crystal in Active Metallic Microcavity

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A hexagonal lattice photonic crystal was fabricated inside the metallic microcavity. And a thin film of Alq3 was incorporated inside the textured cavity as an active medium. The microcavity is designed such that the modified photonic modes due to the textured structure can couple to the excited electronic states of Alq3. This leads to changes in the emission characteristics of Alq3. From the angle-resolved transmission (ARTR) results, the photonic bandgap was observed at all angles from normal incident to 60°. The presence of surface plasmon (SP) was observed in both TM and TE modes of the transmission. Compare to the bulk Alq3 photoluminescence spectrum, significant modification of the photoluminescence (PL) spectrum was observed in the angle-resolved photoluminescence (ARPL). The photoluminescence spectra showed clear suppression in luminescence intensity for the range inside the photonic bandgap. We use decouple approximation for the standing wave modes and derive the photonic waveguide characteristics for two-dimensional textured metallic microcavities. The theoretical result is in good agreement to the experimental result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yamamoto and R. E. Slusher, Phys. Today 46, 66 (1993).

    Article  CAS  Google Scholar 

  2. Dodabalapur L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, J. Appl. Phys. 80, 6954 (1996).

    Article  Google Scholar 

  3. Abram and G. Bourdon, Phys. Rev. A 54, 3476 (1996).

    Article  CAS  Google Scholar 

  4. Abram, I. Robert, and R. Kuszelewicz, IEEE J. Quantum Electron. 34, 71 (1998).

    Article  CAS  Google Scholar 

  5. P. T. Worthing, R. M. Amos, and W. L. Barnes, Phys. Rev. A 59, 865 (1999).

    Article  CAS  Google Scholar 

  6. H. Rigneault, F. Lemarchand, A. Sentenac, and H. Giovannini, Optics Letters 24, 148 (1999).

    Article  CAS  Google Scholar 

  7. P. Kaminow, W. L. Mammel, and H. P. Weber, Applied Optics 13, 396 (1974).

    Article  CAS  Google Scholar 

  8. R. J. Ram, D. I. Babie, R. A. York, and J. E. Bowers, IEEE J. Quantum Electron. 31, 399 (1995).

    Article  CAS  Google Scholar 

  9. S. C. Kitson, W. L. Barnes, J.R. Sambles, J. Appl. Phys. 84, 2399 (1998).

    Article  CAS  Google Scholar 

  10. M. G. Salt and W. L. Barnes, Phys. Rev. B 61, 11125 (2000).

    Article  CAS  Google Scholar 

  11. M. G. Salt, W. C. Tan, and W. L. Barnes, Appl. Phys. Lett. 77, 193 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by Research Grant Council of Hong Kong and FRG Grant of Hong Kong Baptist University.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tam, H.L., Huber, R., Li, K.F. et al. Hexagonal Lattice Photonic Crystal in Active Metallic Microcavity. MRS Online Proceedings Library 797, 52–57 (2003). https://doi.org/10.1557/PROC-797-W2.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-797-W2.8

Navigation