Log in

Mechanisms of Single-Wall Carbon Nanotube Growth by the Laser Vaporization Technique: In Situ Imaging and Spectroscopy

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Single-wall carbon nanotubes are formed by Nd:YAG laser vaporization of a graphite/(1 at. % Ni, 1 at. % Co) target into flowing argon (500 Torr) within a quartz tube furnace (1000 °C). Here, this process is investigated for the first time with time-resolved laser-induced luminescence imaging and spectroscopy of Co atoms, C2 and C3 molecules, and clusters. These measurements under actual synthesis conditions show that the plume of vaporized material is segregated and confined within a vortex ring which maintains a ~1 cm3 volume for several seconds. Using time-resolved spectroscopy and spectroscopic imaging, the time for conversion of atomic and molecular species to clusters was measured for both carbon (200 μs) and cobalt (2 ms). This rapid conversion of carbon to nanoparticles, combined with transmission electron microscopy analysis of the collected deposits, indicate that nanotube growth occurs during several seconds of time from a feedstock of mixed nanoparticles in the gas-suspended plume. Using these in situ diagnostics to adjust the time spent by the plume within the high-temperature zone, single-walled nanotubes of controlled length were grown at an estimated rate of 0.2 μm/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fisher, R. E. Smalley, Science 273, 483 (1996).

    Article  CAS  Google Scholar 

  2. M. Yudasaka, T. Ichihashi, T. Komatsu, S. Iijima, Chem. Phys. Lett. 299, 91 (1999).

    Article  CAS  Google Scholar 

  3. A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez-Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fisher, A. M. Rao, P. C. Eklund, R. E. Smalley, Appl. Phys. A 67, 29 (1998).

    Article  CAS  Google Scholar 

  4. Hu JT, Odom TW, Lieber CM, Accounts of Chemical Research 32, 435–445 (1999).

    Article  CAS  Google Scholar 

  5. A. C. Dillon, P. A. Parilla, K. M. Jones, G. Riker, M. J. Heben, Mater. Res. Symp. Proc. (to be published).

  6. F. Kokai, K. Takahashi, M. Yudasaka, R. Yamada, T. Ichihashi, and S. Iijima, J. Phys. Chem. B 103, 4346 (1999).

    Article  CAS  Google Scholar 

  7. B.I. Yakobson and R.E. Smalley, American Scientist 85, 324 (1997).

    Google Scholar 

  8. S. Iijima, T. Ichihashi, Nature 363, 603 (1993).

    Article  CAS  Google Scholar 

  9. D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 363, 605 (1993).

    Article  CAS  Google Scholar 

  10. Ph. Avouris, T. Hertel, R. Martel, T. Schmidt, H.R. Shea, and R.E. Walkup, Appl. Surf. Sci. 141, 201 (1999).

    Article  CAS  Google Scholar 

  11. R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. De Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, Science 284, 1340 (1999).

    Article  CAS  Google Scholar 

  12. P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, Science 283, 1513 (1999).

    Article  CAS  Google Scholar 

  13. S.S. Wong, E. Joselevich, A.T. Woolley, C.L. Cheung, and C.M. Lieber, Nature 394, 52 (1998).

    Article  CAS  Google Scholar 

  14. H. Schmid and H.-W. Fink, Appl. Phys. Lett. 70, 2679 (1997).

    Article  CAS  Google Scholar 

  15. J. Li, C. Papadopoulos, J. M. Xu, and M. Moskovits, Appl. Phys. Lett. 75, 367 (1999).

    Article  CAS  Google Scholar 

  16. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y.-S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley, Science 280, 1253 (1998).

    Article  CAS  Google Scholar 

  17. Y. Ye, C. C. Ahn, C. Witham, B. Fultz, J. Lku, A. G. Rinzler, D. Colbert, K. A. Smith, and R. E. Smalley, Appl. Phys. Lett. 74, 2307 (1999).

    Article  CAS  Google Scholar 

  18. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 236, 419 (1995).

    Article  Google Scholar 

  19. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J.E. Fisher, Nature 388, 756 (1997).

    Article  CAS  Google Scholar 

  20. H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, M. S. Dresselhaus, Appl. Phys. Lett. 72, 3282 (1998).

    Article  CAS  Google Scholar 

  21. B. C. Satiskumar, A. Govindaraj, R. Sen, C.N.R. Rao, Chem. Phys. Lett. 293, 47 (1998).

    Article  Google Scholar 

  22. S. Arepalli, C.D. Scott, Chem. Phys. Lett. 302, 139 (1999).

    Article  CAS  Google Scholar 

  23. D.B. Geohegan, A.A. Puretzky, G. Duscher and S.J. Pennycook, Appl. Phys. Lett. 72, 2987 (1998).

    Article  CAS  Google Scholar 

  24. D.B. Geohegan, A.A. Puretzky, G. Duscher and S.J. Pennycook, Appl. Phys. Lett. 73, 438 (1998).

    Article  CAS  Google Scholar 

  25. D.B. Geohegan, A.A. Puretzky, D.J. Rader, Appl. Phys. Lett. 74, 3788 (1999).

    Article  CAS  Google Scholar 

  26. A. A. Puretzky, D. B. Geohegan, X. Fan, and S. J. Pennycook, Appl. Phys. Lett. 76, 182 (2000).

    Article  CAS  Google Scholar 

  27. A. A. Puretzky, D. B. Geohegan, X. Fan, and S. J. Pennycook, special issue ofAppl. Phys.A.to be published Jan./Feb. 2000.

  28. David B. Geohegan, A. A. Puretzky, R. L. Hettich, X.-Y. Zheng, R. E. Haufler, and R. N. Compton, in Advanced Materials ’93, IV/ Laser and Ion Beam Modification of Materials, edited by I. Yamada, et al., Trans. Mat. Res. Soc. Jpn., 17, 349 (1994).

    Article  CAS  Google Scholar 

  29. Images also available online at www.ornl.gov

  30. A. V. Bulgakov and N. M. Bulgakova, J. Phys. D: Appl. Phys. 31, 693 (1998).

    Article  CAS  Google Scholar 

  31. F. Garrelie, C. Champeaux, A. Catherinot, Appl. Phys. A 69, 45 (1999).

    Article  CAS  Google Scholar 

  32. D. B. Geohegan, A. A. Puretzky, Appl. Phys. Lett. 67, 197 (1995).

    Article  CAS  Google Scholar 

  33. D. Krajnovich, J. Chem. Phys 102, 726 (1995).

    Article  CAS  Google Scholar 

  34. E. A. Rohlfing, J. Chem. Phys 91, 4531 (1989).

    Article  CAS  Google Scholar 

  35. D. B. Geohegan, A. A. Puretzky, Mater. Res. Symp. Proc. 397, 55 (1996).

    Article  CAS  Google Scholar 

  36. E. A. Rohlfing, J. Chem. Phys. 89, 6103 (1988).

    Article  CAS  Google Scholar 

  37. D. B. Geohegan, Appl. Phys. Lett. 62, 1463 (1993).

    Article  CAS  Google Scholar 

  38. M. Yudasaka, R. Yamada, N. Sensui, T. Wilkins, T. Ichihashi, and S. Iijima, J.Phys. Chem. B 103, 6224 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Geohegan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geohegan, D.B., Puretzky, A.A., Fan, X. et al. Mechanisms of Single-Wall Carbon Nanotube Growth by the Laser Vaporization Technique: In Situ Imaging and Spectroscopy. MRS Online Proceedings Library 593, 3–14 (1999). https://doi.org/10.1557/PROC-593-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-593-3

Navigation