Log in

Lead Iodide X-Ray and Gamma-Ray Spectrometers for Room and High Temperature Operation

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In this study we report on the results of the investigation of lead iodide material properties. The effectiveness of a zone refining purification method on the material purity is determined by ICP-MS and ICP-OES and correlated to the electrical and physical material properties. We show that this zone refining method is very efficient in removing impurities from lead iodide, and we also determine the segregation coefficient for some of these impurities. Triple axis x-ray diffraction (TAD) analysis has been used to determine the crystalline perfection of the lead iodide after applying various cutting, etching and fabrication methods. The soft lead iodide crystal was found to be damaged when cleaved by a razor blade, but by using a diamond wheel saw, followed by etching, the crystallinity of the material was much improved, as observed by TAD. Low temperature photoluminescence also indicates an improvement in the material properties of the purified lead iodide. Electrical properties of lead iodide such as carrier mobility, were calculated based on carrier - phonon scattering. The results for the electrical properties were in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Palosz, Phys. Stat. Sol. (a) 80, 11(1983).

    Article  CAS  Google Scholar 

  2. S. Roth and W. R Willig, Appl. Phys. Lett. 18, 328(1971).

    Article  CAS  Google Scholar 

  3. W. R Willig, Nucl. Instr. and Meth., 101 (1972) 23.

    Article  CAS  Google Scholar 

  4. C. Manfredotti, R. Murri, A. Quirini, and L. Vasanelli, IEEE Trans. Nuc. Sci. NS-24, 126(1977).

    Article  Google Scholar 

  5. G. Baldini and S. Franch, Phys. Rev. Lett., 26, 503 (1971).

    Article  CAS  Google Scholar 

  6. L. Ch. Schluter and M. Schluter, Phys. Rev. B9, 1652 (1954).

    Google Scholar 

  7. F. Olschner, J. C. Lund, K. S. Shah, and M. R. Squillante, ICFA Instrum. Bull. 7, 9(1989).

    Google Scholar 

  8. R. Minder, G. Ottaviani, and C. Canali, Phys. Chem. Solids 37, 417(1976).

    Article  CAS  Google Scholar 

  9. J.C. Lund, K.S. Shah, M.R. Squillante, and F. Sinclair, IEEE Trans. Nuc. Nci. NS-35, 89 (1988).

    Article  Google Scholar 

  10. J.C. Lund, K.S. Shah, M.R. Squillante, L.P. Moy, F. Sinclair and G. Entine, Nucl. Inst. and Meth. A283, 299 (1989).

    Article  CAS  Google Scholar 

  11. J.C. Lund, K.S. Shah, F. Olschner, J. Zhang, L.P. Moy, F. Medrick, and M.R. Squillante, Nucl. Inst. and Meth. A322, 464 (1992).

    Article  CAS  Google Scholar 

  12. J. Zhang, K.S. Shah, F. Olschner, J.C. Lund, L.P. Moy, K. Daley, L. Cirignano, and M. R. Squillante, Nucl. Inst. and Meth. A322, 499 ( 1992).

    Article  CAS  Google Scholar 

  13. D.C. Dominique, R.B. James, H. Feemster, R. Anderson, A.J. Antolak, D.H. Morse, A.E. Pontau, H. Jayatirtha, A. Burger, X.J. Bao, T.E. Schlesinger, G.S. Bench, and D.W. Heikkinen, Mat. Res. Symp. Proc. 302, 335(1993).

    Article  Google Scholar 

  14. V. Deich and M. Roth, Nucl. Instr. and Meth., Vol.380, 169(1996).

    Article  CAS  Google Scholar 

  15. J.C. Lund, F. Olschner and A. Burger, in Semiconductors for Room Temperature Nuclear Detector Applications, edited by T.E. Schlesinger and R.B. James, in Semiconductors and Semimetals, Vol. 43 (Academic Press, San Diego, 1995) 443.

    Article  CAS  Google Scholar 

  16. D.C. David, A. Burger, W. Wang, R.B. James, T.E. Schlesinger and J.C. Lund, Proc. SPIE, Vol. 1734 (1992) 146.

    Article  CAS  Google Scholar 

  17. M. Rao and O.N. Srivastava, J. Phys. D: Appl. Phys. 11, 919(1978).

    Article  CAS  Google Scholar 

  18. S.K. Chaudhary and G.C. Trigunayat, J. Crystal Growth 62, 398 (1983).

    Article  CAS  Google Scholar 

  19. M. Chand and G. C. Trigunayat, J. Crystal Growth 39, 299 (1977).

    Article  CAS  Google Scholar 

  20. M.A. George, M. Azoulay, H. N. Jayatirha, Y. Biao, A. Burger, W. E. Collins and E. Silberman. J. of Crystal Growth, 137, 299 (1994)

    Article  CAS  Google Scholar 

  21. J. Eckstein, B. Erler and K. W. Benz. Mat. Res. Bull. 27, 357 (1992).

    Article  Google Scholar 

  22. W.G. Pfann, “Zone Melting”, Robert E. Kreiger Publishing Co., Huntington, New-York (1978).

    Google Scholar 

  23. M.S. Brodin, A.O. Gushcha, L.V. Taranenko, V.V. Tishchenko, V.N. Khotyaintsev, S.G. Shevel, Sov. Phys. Solid State (bd28}, 1658 (1986).

    Google Scholar 

Download references

Acknowledgement

We gratefully acknowledgment the support of the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermon, H., James, R.B., Lund, J. et al. Lead Iodide X-Ray and Gamma-Ray Spectrometers for Room and High Temperature Operation. MRS Online Proceedings Library 487, 361–368 (1997). https://doi.org/10.1557/PROC-487-361

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-487-361

Navigation