Log in

When Interface Gets Rough…

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Interface roughness is one of the central features in many important thin film technologies. Roughness is a result of far from equilibrium dynamic growth process and is difficult to describe using conventional statistical mechanics. Recently a dynamic scaling hypothesis has been proposed to describe such a system in which both time and space scaling are considered simultaneously. This approach has generated tremendous interest, both theoretical and experimental, for scientists working in thin film growth/etching as well as many diverse fields. In this paper we shall discuss the origin of the formation of interface roughness, the difference between near equilibrium and far from equilibrium growth problems, the relevant parameters that are necessary to describe a rough interface, and the application of the self-affine scaling concept in growth problems. The experimental approaches to study rough interfaces and growth fronts using diffraction will be summarized. It is shown that there exist two types of dynamic scaling during growth, one with a stationary local slope and another one with a nonstationary local slope. Future directions in this new area of research are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Bauer, Z. Kristallogr. 110, 372 (1958).

    Article  CAS  Google Scholar 

  2. R. Kern, G. L. Lay, and J.J. Metois, Basis Mechanisms in the Early Stages of Epitaxy, in Current Topis in Mat. Sci. 3, 131 (North Holland, Amsterdam, 1979).

    Google Scholar 

  3. J.A. Venables, G.D.T Spiller, and M. Hanbichen, Rpt. Progr. Phys. 47, 399 (1984).

    Article  Google Scholar 

  4. F. Family and T. Vicsek, J. Phys. A18, L75 (1985).

    Google Scholar 

  5. For review, see Dynamics of Fractal Surfaces, edited by F. Family and T. Vicsek (World Scientific, Singapore, 1990).

    Google Scholar 

  6. M.W. Mitchell and A. Bonnell, J. Mater. Res. 5, 2244 (1990).

    Article  CAS  Google Scholar 

  7. J.M. Gómez-Rodríguez, A.M. Baró, and R.C. Salarezza, J. Vac. Sci. Technol. B9, 495 (1991).

    Article  Google Scholar 

  8. R.S. Williams, R. Bruinsma, and J. Rudnik, in Evoltion of Surface and Thin Film Microstructure, edited by H.A. Atwater, M. Grabow, E. Chason, and M. G. Lagally (Mat. Res. Soc. Proc. 280, Pittsburgh, PA, 1992); E. A. Eklund, R. Bruinsma, J. Rudnik, and R.S. Williams, Phys. Rev. Lett. 67, 1759 (1991).

  9. J. Krim, I. Heyvaert, C. Van Haesendonck, and Y. Bruynseraede, Phys. Rev. Lett. 70, 57 (1993).

    Article  CAS  Google Scholar 

  10. H.-N. Yang, A. Chan, and G.-C. Wang, J. Appl. Phys. 74, 101 (1993).

    Article  CAS  Google Scholar 

  11. H. You, R.P. Chiarello, H.K. Kim, and K.G. Vandervoort, Phys. Rev. Lett. 70, 2900 (1993).

    Article  CAS  Google Scholar 

  12. G. Palasantzas and J. Krim, Phys. Rev. Lett., in press.

  13. W.M. Tong, R.S. Williams, A. Yanase, Y. Segawa, and M.S. Anderson, Phys. Rev. Lett. 72, 3374 (1994).

    Article  CAS  Google Scholar 

  14. R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, J. Appl. Phys. 75, 7498 (1994).

    Article  Google Scholar 

  15. D.J. Eaglesham, H.-J. Gossmann, and M. Cerullo, Phys. Rev. Lett. 65, 1227 (1990); D.J. Eaglesham and G. H. Gilmer, in Surface disordering: Growth, roughening and phase transitions, edited by R. Jullien et al. (Nova, NY 1993).

    Article  CAS  Google Scholar 

  16. For review, see H.-N. Yang, G.-C. Wang, and T.-M. Lu, Diffraction from Rough Surfaces and Growth Fronts (World Scientific, Singapore, 1993).

    Book  Google Scholar 

  17. H.-N. Yang, T.-M. Lu, and G.-C. Wang, Phys. Rev. Lett. 68, 2612 (1992); Phys. Rev. B47, 3911 (1993).

    Article  CAS  Google Scholar 

  18. Po-zen Wong and Alan J. Bray, Phys. Rev. B37, 7751 (1988).

    Article  Google Scholar 

  19. S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. Rev. B38, 2297 (1988).

    Article  Google Scholar 

  20. R. Chiarello, V. Panella, J. Krim, and C. Thompson, Phys. Rev. Lett. 67, 3408 (1991).

    Article  CAS  Google Scholar 

  21. Y.-L. He, H.-N. Yang, T.-M. Lu, and G.-C. Wang, Phys. Rev. Lett. 69, 3770 (1992).

    Article  CAS  Google Scholar 

  22. H.-J. Ernst, F. Fabre, R. Folkerts, and J. Lapujoulade, Phys. Rev. Lett. 72, 112 (1994).

    Article  CAS  Google Scholar 

  23. C. Thompson, G. Palasantzas, Y.P. Feng, S.K. Sinha, and J. Krim, Phys. Rev. B49, 4902 (1994).

    Article  Google Scholar 

  24. H.-N. Yang, G.-C. Wang, and T.-M. Lu, Phys. Rev. B50, 7365 (1994).

    Google Scholar 

  25. T. Salditt, T.H. Metzger, and J. Peisl, Phys. Rev. Lett. 73, 2228 (1994).

    Article  CAS  Google Scholar 

  26. H.-N. Yang, G.-C. Wang, and T.-M. Lu, Phys. Rev. Lett. 73, 2348 (1994).

    Article  CAS  Google Scholar 

  27. H. Zeng and G. Vidali, Phys. Rev. Lett., in press.

  28. D.E. Wolf and J. Villain, Europhys. Lett. 13, 389 (1990).

    Article  CAS  Google Scholar 

  29. Z.-W. Lai and S. Das Sarma, Phys. Rev. Lett. 66, 2348 (1991).

    Article  CAS  Google Scholar 

  30. L.-H. Tang and T. Nattermann, Phys. Rev. Lett. 66, 2899 (1991).

    Article  CAS  Google Scholar 

  31. A. Zangwill, D.D. Vvedensky, C.N. Luse, and M.R. Wilby, Surf. Sci. 274, L529 (1992); Phys. Rev. E48, 852 (1993).

    Article  CAS  Google Scholar 

  32. M. Siegert and M. Plischke, Phys. Rev. Lett. 68, 2035 (1992).

    Article  CAS  Google Scholar 

  33. J.G. Amar, P.-M. Lain, and F. Family, Phys. Rev. E47, 3242 (1993); J.G. Amar and F. Family, in Mechanisms of Thin Film Evolution, edited by S.M. Yalisove, C.V. Thompson, and D.J. Eaglesham (Mat. Res. Soc. Proc. 317, Pittsburgh, PA, 1994).

    Google Scholar 

  34. W. W. Mullins, J. Appl. Phys. 28, 334 (1957); 30, 77 (1959).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, TM., Yang, HN. & Wang, GC. When Interface Gets Rough…. MRS Online Proceedings Library 367, 283–292 (1994). https://doi.org/10.1557/PROC-367-283

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-367-283

Navigation