Log in

Research Progress in the Resistance Switching of Transition Metal Oxides for RRAM Application: Switching Mechanism and Properties Optimization

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Electric-induced resistance switching (EIRS) effect based on transition metal (TM) oxides, such as perovskite manganites (Pr1-xCaxMnO3, La1-xCaxMnO3) and binary oxides (NiO, TiO2 and CoO) etc, has attracted great interest for potential applications in next generation nonvolatile memory known as resistance random access memory (RRAM). Compared with other nonvolatile memories, RRAM has several advantages, such as fast erasing times, high storage densities, and low operating consumption. Up to date, the switching mechanism, property improvement and new materials exploitation are still the hotspots in RRAM research.

In this report, the main results of resistance switching of two kinds of TM oxides including La0.7Ca0.3MnO3 and TiO2 were presented. Based on the I-V characteristics, the field-direction dependence of resistance switching (RS) behavior, and the conduction process analysis, the EIRS mechanisms were studied in detail. For the La0.7Ca0.3MnO3 film, the EIRS mechanism was related to the carrier injected space charge limited current (SCLC) conduction controlled by the traps existing at the interface between top electrode and La0.7Ca0.3MnO3 film. The RS behavior is produced by the trap**/detrap** process of carriers under different voltages. For the TiO2 film, both unipolar and bipolar RS behavior can be obtained in our experiments. The interface controlled filamentary mechanism was proposed to explain the unipolar EIRS in nanocrystalline TiO2 thin films, while the bipolar RS behavior may be related to the charge trap** or detrap** effect. In addition, it was confirmed that the I-V sweeps in vacuum environment, the applying of asymmetry pulse pairs and the oxygen annealing of films can improve the endurance of the EIRS devices. Our researches will provide some meaningful clues to understanding the EIRS mechanism and some useful pathways for the development of RRAM devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yoshida C, Tsunoda K, Noshiro H and Sugiyama Y, Appl. Phys. Lett. 91, 223510 (2007).

    Article  Google Scholar 

  2. Baek I G, Lee M S, Seo S, Lee M J, Seo D H, Suh D -S, Park J C, Park S O, Kim H S, Yoo I K, Chung U-In and Moon J T, Tech. Dig. IEDM 587–90 (2004).

    Google Scholar 

  3. Zhuang W W, Pan W, Ulrich B D, Lee J J, Stecker L, Burmaster A, Evans D R, Hsu S T, Tajiri M, Shimaoka A, Inoue K, Naka T, Awaya N, Sakiyarma K, Wang Y, Liu S Q, Wu N J and Ignatiev A, Tech. Dig. IEDM 193–96 (2002).

    Google Scholar 

  4. A.Sawa, T.Fujii, M.Kawasaki, and Y. Tokura, Appl. Phys. Lett. 85, 4073 (2004).

    Article  CAS  Google Scholar 

  5. S.Tsui, A.Baikolov, J.Cmaidalka, Y.Y.Sun, Y.Q.Wang, Y.Y.Xue, C.W.Chu, L.Chen, and A.J.Jacobson, Appl. Phys. Lett. 85, 317 (2004).

    Article  CAS  Google Scholar 

  6. Rickard Fors, Sergey I.Khartsey, and Alexander M.Grishin, Phys. Rev. B 71, 045305 (2005).

  7. M.J.Rozenberg, I.H.Inoue, M.J.Sánchez, Appl. Phys. Lett. 88, 033510 (2006).

  8. A.Odagawa, H.Sato, I.H.Inoue, H.Akoh, M.Kawasaki, and Y.Tokura, Phys. Rev. B 70, 224403 (2004).

    Article  Google Scholar 

  9. D.S.Shang, Q.Wang, L.D.Chen, R.Dong, X.M.Li, and W.Q.Zhang, Phys. Rev. B 73, 245427 (2006).

    Article  Google Scholar 

  10. D.S.Shang, L. D. Chen, Q.Wang, W.Q. Zhang, Z.H.Wu, and X. M. Li, Appl. Phys. Lett. 89, 172102 (2006).

    Article  Google Scholar 

  11. S.Q.Liu, N.J.Wu, and A.Ignatiev, Appl. Phys. Lett. 76, 2749 (2000).

    Article  CAS  Google Scholar 

  12. I.H.Inoue, S.Yasuda, H.Akinaga, and H.Takagi, Phys. Rev. B 77, 035105 (2008).

  13. A.Baikalov, Y.Q.Wang, B.Shen, B.Lorenz, S.Tsui, Y.Y.Sun, Y.Y.Xue, and C.W.Chu, Appl. Phys. Lett. 83, 957 (2003).

    Article  CAS  Google Scholar 

  14. Krzysztof Szot, Wolfgang Speier, Gustav Bihlmayer and Rainer Waser, Nature Mater. 5, 312 (2006).

    Article  CAS  Google Scholar 

  15. G.I.Meijer, Science 319, 1625 (2008).

    Article  CAS  Google Scholar 

  16. Ch. Jooss, J. Hoffmann, J. Fladerer, M. Ehrhardt, T. Beetz, L. Wu, and Y. Zhu, Phys. Rev. B 77, 132409 (2008).

    Article  Google Scholar 

  17. Yu Chao Yang, Feng Pan, Qi Liu, Ming Liu, and Fei Zeng, Nano Letters, March 10, 2009 DOI: 10.1021/n1900006g

  18. B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, J. Appl. Phys. 98, 033715 (2005).

  19. W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, Appl. Phys. Lett. 92, 022110 (2008).

  20. S.C. Chae, J.S. Lee, S. Kim, S.B. Lee, S.H. Chang, C. Liu, B. Kahng, H. Shin, D.-W. Kim, C.U. Jung, S. Seo, M.-J. Lee, and T.W. Noh: Adv. Mater. 20, 1154 (2008).

    Article  CAS  Google Scholar 

  21. C. Rohde, B.J. Choi, D.S. Jeong, S. Choi, J.S. Zhao, and C.S. Hwang, Appl. Phys. Lett. 86, 262907 (2005).

    Article  Google Scholar 

  22. Rui Dong, Qun Wang, Lidong Chen, Tonglai Chen, **aomin Li, Appl. Phys. A, 80, 13 (2005).

  23. R. Dong, Q. Wang, L. D. Chen, D. S. Shang, T. L. Chen, X. M. Li, and W. Q. Zhang, Appl. Phys. Lett. 86, 172107 (2005).

    Article  Google Scholar 

  24. D S Shang, L D Chen, Q Wang, Z H Wu, W Q Zhang and X M Li, J. Phys. D: Appl. Phys. 40, 5373 (2007).

    Article  CAS  Google Scholar 

  25. D. S. Shang, L.D.Chen, Q.Wang, W.D.Yu, X.M.Li, J. R. Sun, and B. G. Shen, J. Appl. Phys. 105, 063511 (2009).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Li, X., Chen, L. et al. Research Progress in the Resistance Switching of Transition Metal Oxides for RRAM Application: Switching Mechanism and Properties Optimization. MRS Online Proceedings Library 1160, 1001 (2009). https://doi.org/10.1557/PROC-1160-H10-01

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1160-H10-01

Navigation